Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398539

RESUMO

Sulfur hexafluoride (SF6), which survives in the atmosphere for an extremely long period of time, is the most potent greenhouse gas regulated under the Kyoto Protocol. So, the accurate monitoring of atmospheric SF6 plays an important role in the study of the control policies for reducing greenhouse gas emissions. The instruments for SF6 measurement are typically calibrated using certified reference materials. The concentrations of the commercially available SF6 reference materials usually have a broad range, from 1 µmol/mol to 6000 µmol/mol. Some characteristics including sensitivity, linear range, relative standard deviation, and accuracy are crucial for the determination of SF6 in such a broad concentration range. Therefore, the selection of a proper detector for the accurate determination of SF6 with such a broad range is extremely important to establish a gas chromatography (GC) method for developing SF6 reference materials. In this paper, several typical GC methods with different detectors, including a thermal conductivity detector (TCD), a pulsed discharge helium ionization detector (PDHID), and a flame photometric detector (FPD), were carefully established for the accurate determination of SF6 with different concentrations. The results show that an FPD detector has a relatively narrow linearity range, thus a quadratic equation should be established for building a calibration curve. The PDHID and TCD have good linearity with coefficients of 1.0000 in the concentration range of 10-100 µmol/mol (using a PDHID), and 100-1000 µmol/mol (using a TCD), respectively. Further considering the measurement errors of indication results, the PDHID is suitable for SF6 measurement when the concentrations are below 100 µmol/mol, whereas the TCD is suitable for SF6 measurement when the concentrations are over 100 µmol/mol. These results provide useful guidance in choosing an appropriate GC detector for the accurate determination of SF6, which are especially very helpful for developing SF6 reference materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA