Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 623, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245518

RESUMO

Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.


Assuntos
Luz , Prótons , Transporte de Elétrons , Conformação Molecular , Flavinas/química , Proteínas de Bactérias/metabolismo
2.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212400

RESUMO

Phototriggers are useful molecular tools to initiate reactions in enzymes by light for the purpose of photoenzymatic design and mechanistic investigations. Here, we incorporated the non-natural amino acid 5-cyanotryptophan (W5CN) in a polypeptide scaffold and resolved the photochemical reaction of the W5CN-W motif using femtosecond transient UV/Vis and mid-IR spectroscopy. We identified a marker band of ∼2037 cm-1 from the CN stretch of the electron transfer intermediate W5CN·- in the transient IR measurement and found UV/Vis spectroscopic evidence for the W·+ radical at 580 nm. Through kinetic analysis, we characterized that the charge separation between the excited W5CN and W occurs in 253 ps, with a charge-recombination lifetime of 862 ps. Our study highlights the potential use of the W5CN-W pair as an ultrafast phototrigger to initiate reactions in enzymes that are not light-sensitive, making downstream reactions accessible to femtosecond spectroscopic detection.


Assuntos
Cinética , Transporte de Elétrons
3.
J Am Chem Soc ; 145(6): 3394-3400, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722850

RESUMO

Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.


Assuntos
Luz , Prótons , Análise Espectral , Triptofano
4.
Proc Natl Acad Sci U S A ; 119(26): e2203996119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737837

RESUMO

Proton-coupled electron transfer (PCET) is key to the activation of the blue light using flavin (BLUF) domain photoreceptors. Here, to elucidate the photocycle of the central FMN-Gln-Tyr motif in the BLUF domain of OaPAC, we eliminated the intrinsic interfering W90 in the mutant design. We integrated the stretched exponential function into the target analysis to account for the dynamic heterogeneity arising from the active-site solvation relaxation and the flexible H-bonding network as shown in the molecular dynamics simulation results, facilitating a simplified expression of the kinetics model. We find that, in both the functional wild-type (WT) and the nonfunctional Q48E and Q48A, forward PCET happens in the range of 105 ps to 344 ps, with a kinetic isotope effect (KIE) measured to be ∼1.8 to 2.4, suggesting that the nature of the forward PCET is concerted. Remarkably, only WT proceeds with an ultrafast reverse PCET process (31 ps, KIE = 4.0), characterized by an inverted kinetics of the intermediate FMNH˙. Our results reveal that the reverse PCET is driven by proton transfer via an intervening imidic Gln.


Assuntos
Transporte de Elétrons , Flavinas , Luz , Flavinas/genética , Flavinas/metabolismo , Simulação de Dinâmica Molecular , Prótons
5.
J Am Chem Soc ; 144(3): 1232-1242, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35034454

RESUMO

Native chemical ligation (NCL) provides a powerful solution to assemble proteins with precise chemical features, which enables a detailed investigation of the protein structure-function relationship. As an extension to NCL, the discovery of desulfurization and expressed protein ligation (EPL) techniques has greatly expanded the efficient access to large or challenging protein sequences via chemical ligations. Despite its superior reliability, the NCL-desulfurization protocol requires orthogonal protection strategies to allow selective desulfurization in the presence of native Cys, which is crucial to its synthetic application. In contrast to traditional thiol protecting groups, photolabile protecting groups (PPGs), which are removed upon irradiation, simplify protein assembly and therefore provide minimal perturbation to the peptide scaffold. However, current PPG strategies are mainly limited to nitro-benzyl derivatives, which are incompatible with NCL-desulfurization. Herein, we present for the first time that quinoline-based PPG for cysteine can facilitate various ligation strategies, including iterative NCL and EPL-desulfurization methods. 7-(Piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ) caging of multiple cysteine residues within the protein sequence can be readily introduced via late-stage modification, while the traceless removal of PPZQ is highly efficient via photolysis in an aqueous buffer. In addition, the PPZQ group is compatible with radical desulfurization. The efficiency of this strategy has been highlighted by the synthesis of γ-synuclein and phosphorylated cystatin-S via one-pot iterative ligation and EPL-desulfurization methods. Besides, successful sextuple protection and deprotection of the expressed Interleukin-34 fragment demonstrate the great potential of this strategy in protein caging/uncaging investigations.


Assuntos
Proteínas
6.
Angew Chem Int Ed Engl ; 61(10): e202114423, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927328

RESUMO

We present direct observation of ultrafast proton rocking in the central motif of a BLUF domain protein scaffold. The mutant design has taken consideration of modulating the proton-coupled electron transfer (PCET) driving forces by replacing Tyr in the original motif with Trp, in order to remove the interference of a competing electron transfer pathway. Using femtosecond pump-probe spectroscopy and detailed kinetics analysis, we resolved an electron-transfer-coupled Grotthuss-type forward and reverse proton rocking along the FMN-Gln-Trp proton relay chain. The rates of forward and reverse proton transfer are determined to be very close, namely 51 ps vs. 52 ps. The kinetic isotope effect (KIE) constants associated with the forward and reverse proton transfer are 3.9 and 5.3, respectively. The observation of ultrafast proton rocking is not only a crucial step towards revealing the nature of proton relay in the BLUF domain, but also provides a new paradigm of proton transfer in proteins for theoretical investigations.


Assuntos
Adenilil Ciclases/química , Flavina-Adenina Dinucleotídeo/química , Luz , Prótons , Adenilil Ciclases/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Oscillatoria/enzimologia , Domínios Proteicos
7.
J Phys Chem B ; 124(13): 2560-2567, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32155068

RESUMO

Ultraviolet radiation induced damage to DNA/RNA can lead to chemical modifications to the nucleosides, and understanding the excited states involved is the key to reveal the mechanism of those reactions. 5-Halogen cytidines are metabolized DNA/RNA nucleoside byproducts that exhibit very important biological functions in the process of nucleic acid methylation as well as DNA/RNA damage repairing. However, despite the accumulation of knowledge about their biological functions, the effects of halogen substitution on the excited states of canonical nucleoside have not received much attention. In this work, the excited-state dynamics of 5-fluorocytidine, 5-chlorocytidine, and 5-bromocytidine is investigated. Excitation at 295 nm results in a bifurcation event that leads to sub-picosecond decay to ground state and population of intramolecular charge transfer states which have several to tens of picosecond lifetimes. The results elucidate the general excited-state relaxation pathways in 5-halogen cytidines, and the intrinsic charge transfer state may affect the halogen bonding that stabilizes DNA and protein structures when 5-halogen cytidines are excited.


Assuntos
Halogênios , Raios Ultravioleta , DNA , RNA , Análise Espectral
8.
J Phys Chem B ; 124(5): 771-776, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31941277

RESUMO

The ultrafast solvation dynamics of reduced nicotinamide adenine dinucleotide (NADH) free in solution has been investigated, using both a femtosecond upconversion spectrophotofluorometer and a picosecond time-correlated single-photon counting (TCSPC) apparatus. The familiar time constant of solvent relaxation originating in "bulk water" was found to be ∼1.4 ps, revealing ultrafast solvent reorientation upon excitation. We also found a slower spectral relaxation process with an apparent time of 27 ps, suggesting there could either be dissociable "biological water" hydration sites on the surface of NADH or internal dielectric rearrangements of the flexible solvated molecule on that timescale. In contrast, the femtosecond fluorescence anisotropy measurement revealed that rotational diffusion happened on two different timescales (3.6 ps (local) and 141 ps (tumbling)); thus, any dielectric rearrangement scenario for the 27 ps relaxation must occur without significant chromophore oscillator rotation. The coexistence of quasi-static self quenching (QSSQ) with the slower relaxation is also discussed.


Assuntos
NAD/química , Água/química , Solventes/química , Espectrometria de Fluorescência
9.
J Phys Chem B ; 123(27): 5782-5790, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246467

RESUMO

DNA methylation and demethylation are the key steps in epigenetics. Emerging studies have demonstrated that these two processes play crucial roles in mammalian development and pathogenesis. Epigenetic modified cytosine and its further oxidative products, including 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, are called the "new four bases of DNA". The appearance of such new epigenetic bases can complicate DNA photodamage and repairing mechanism because they could have drastically different excited-state dynamics compared to canonical DNA nucleobases. In this study, excited-state dynamics of three demethylated nucleosides in buffer solution at physiological pH were investigated by femtosecond to microsecond time-resolved spectroscopy. Distinct excited-state dynamics are found in these demethylated nucleosides. For 2'-deoxy-5-formylcytidine (5fdCyd), direct observation of ultrafast intersystem crossing to the triple state with a 69% quantum yield is presented. Meanwhile, the triplet-state energy of 5fdCyd can transfer to the ambient molecular oxygen and generate destructive singlet oxygen. On the other hand, no such observation is seen in 2'-deoxy-5-hydroxymethylcytidine (5hmdCyd) and 2'-deoxy-5-carboxycytidine (5cadCyd), and these two bases show ultrafast internal conversion similar to that in 5-methylcytidine and cytidine. These results indicate that 5fdCyd is an effective internal triplet photosensitizer in DNA, and it could act as a new hot spot in DNA photodamage.


Assuntos
DNA/química , Desoxiuridina/análogos & derivados , DNA/genética , Desoxiuridina/química , Epigênese Genética/genética , Conformação de Ácido Nucleico
10.
Phys Chem Chem Phys ; 21(13): 6878-6885, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30887998

RESUMO

N6-Methyladenine (6MeAde), the most abundant internal modification in mRNA, has proved to be an important epigenetic biomarker for gene regulation just like 5-methylcytosine in DNA. Recently, a unique UV-induced response of 6MeAde was reported, which makes it instructive and intriguing to reveal the excited state relaxation mechanism in this methylated adenine and its derivatives. In this work, we investigated 6MeAde and its ribose species N6-methyladenosine (6MeAdo) by using femtosecond time-resolved fluorescence up-conversion (FUC) and broadband transient absorption (TA) spectroscopy. Both 6MeAde and 6MeAdo exhibit a hundreds of femtoseconds lifetime, which originates from the efficient depletion of the ππ* (La) state. A several picoseconds lifetime is also observed and it should be attributed to the ππ* (Lb) state. Surprisingly, dual peak fluorescence emission is observed in 6MeAde and the long wavelength emission is ascribed to an intramolecular charge transfer (ICT) state. The lifetime of this ICT state is determined to be 107 ps. The kinetic isotope effect shows that the ICT state is closely associated with the solute-solvent H-bonding in aqueous solution. In 6MeAdo, the ICT state is apparently quenched and adenine-like excited state dynamics suggests that DNA/RNA containing such modification could still possess excellent photostability under UV irradiation. Our results contain an important insight for understanding excited state properties in epigenetic modified DNA/RNA.


Assuntos
Adenina/análogos & derivados , Adenina/química , Epigênese Genética , Ligação de Hidrogênio , Cinética , Metilação , Fenômenos Físicos , Solventes/química , Espectrometria de Fluorescência/métodos , Espectrofotometria/métodos , Termodinâmica
11.
Free Radic Biol Med ; 135: 125-131, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30849487

RESUMO

In the amyloid plaques, a signature of AD, abnormally high Cu2+ concentrations are found bound to Aß. Most of previous studies reported that Cu-Aß could contribute to oxidative stress, as H2O2 and •OH are catalytically generated by Cu-Aß with the assistance of biological reductant, with only one recent report stated that free O2•- is also generated in the Cu-Aß catalyzed processes, where an indirect technique was applied. To comprehensively investigate the free radicals produced during this Cu-Aß-mediated process with a biological reductant, DNA-cleavage assay, an indirect method, and two direct methods including electron paramagnetic resonance (EPR) spectroscopy and transient absorption spectroscopy (TAS), both having qualitative and quantitative power, were employed in this work. All the experimental results obtained from the three methods demonstrated that Cu-Aß in the biological reducing environment was not only able to catalyze the production of H2O2 and •OH, but also to generate free O2•-. The results further indicated that O2•- was the precursor of H2O2 and •OH. It is also important to note that the results obtained from EPR spectroscopy and TAS provided direct evidence for the presence of O2•- and •OH. By virtue of the direct techniques, we also found that the longest peptide fragments of Aß16, Aß40, and Aß42 produced the least radicals with a lowest rate. More interestingly, the fibrillar forms of Aß generated less O2•- and •OH compared with oligomeric and monomeric forms.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/patologia , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Oxirredução , Estresse Oxidativo/genética , Oxigênio/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia , Espécies Reativas de Oxigênio/metabolismo
12.
Chemphyschem ; 20(5): 757-765, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702794

RESUMO

Azabases are intriguing DNA and RNA analogues and have been used as effective antiviral and anticancer medicines. However, photosensitivity of these drugs has also been reported. Here, pH-controlled intersystem crossing (ISC) process of 9H 8-azaadenine (8-AA) in aqueous solution is reported. Broadband transient absorption measurements reveal that the hydrogen atom at N9 position can greatly affect ISC of 8-AA and ISC is more favorable when 8-AA is in its neutral form in aqueous solution. The initial excited ππ* (S2 ) state evolves through ultrafast internal conversion (IC) (4.2 ps) to the lower-lying nπ* state (S1 ), which further stands as a door way state for ISC with a time constant of 160 ps. The triplet state has a lifetime of 6.1 µs. On the other hand, deprotonation at N9 position promotes the IC from the ππ* (S2 ) state to the ground state (S0 ) and the lifetime of the S2 state is determined to be 10 ps. The experimental results are further supported by time-dependent density functional theory (TDDFT) calculations. Singlet oxygen generation yield is measured to be 13.8 % for the neutral 8-AA while the deprotonated one exhibit much lower yield (<2 %), implying that this compound could be a potential pH-sensitized photodynamic therapy agent.

13.
Chem Phys Lett ; 726: 18-21, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32921799

RESUMO

The metabolic cofactor and energy carrier NADH (nicotinamide adenine dinucleotide, reduced) has fluorescence yield and lifetime that depends strongly on conformation, a fact that has enabled metabolic monitoring of cells via FLIM (Fluorescence Lifetime Microscopy). Using femtosecond fluorescence upconversion, we show that this molecule in solution participates in ultrafast self-quenching along with both bulk solvent relaxation and spectral relaxation on 1.4 and 26 ps timescales. This, in effect, means up to a third of NADH is effectively "dark" for FLIM in the 400-500 nm observation window commonly employed. Methods to compensate for, avoid or measure dark species corrections are outlined.

14.
J Phys Chem B ; 122(28): 7027-7037, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29939745

RESUMO

Methylated cytosine is proved to have an important role as an epigenetic signal in gene regulation and is often referred to "the fifth base of DNA". A comprehensive understanding of the electronic excited state relaxation in cytosine and its methylated derivatives is crucial for revealing UV-induced photodamage to the biological genome. Because of the existence of multiple closely lying "bright" and "dark" excited states, the decay pathways in these DNA nucleosides are the most complex and the least understood so far. In this study, femtosecond transient absorption with different excitation wavelengths (240-296 nm) was used to study the relaxation of excited electronic states of 5-methylcytosine (5mC) and 2'-deoxy-5-methylcytidine (5mdCyd) in phosphate buffered aqueous solution and in acetonitrile solution. Two distinct nonradiative decay channels were directly observed. The first one is a several picosecond internal conversion channel that involves two bright ππ* states (ππ*2 and ππ*1) when ππ*2 state is initially populated. The second channel contains the lower energy ππ*1 state and a so far experimental unidentified long-lived state which exhibits a several nanosecond lifetime. The long-lived state can only be accessed by the initially excited ππ*1 state. Inspired by this new discovery in 5mC and 5mdCyd, we revisited the decay of excited state of 2'-deoxycytidine (dCyd), revealing very similar decay pathways. Additionally, a well-known dark nOπ* state (carbonyl lone pair) with ∼30 ps lifetime is present in both decay channels in dCyd. With our detailed experimental results, we successfully reconcile the long history debate of cytosine excited state relaxation mechanism by pointing out that the reason for the complex dynamics under traditional 266 nm excitation is mixed signals from the above-mentioned two distinct decay pathways. Our findings lead to a dramatically different and new picture of electronic energy relaxation in 5mdCyd/dCyd and could help to understand photostability as well as UV-induced photodamage of these nucleotides and related DNAs.


Assuntos
Citidina/análogos & derivados , Desoxicitidina/química , Soluções/química , Acetonitrilas/química , Citidina/química , Dano ao DNA/efeitos da radiação , Cinética , Teoria Quântica , Termodinâmica , Raios Ultravioleta
15.
Free Radic Biol Med ; 123: 1-7, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29709704

RESUMO

Nitric oxide (NO) donors are valuable tools to probe the profound implications of NO in health and disease. The elusive nature of NO bio-relevance has largely limited the use of spontaneous NO donors and promoted the development of next generation NO donors, whose NO release is not only stimulated by a trigger, but also readily monitored via a judiciously built-in self-calibration mechanism. Light is without a doubt the most sensitive, versatile and biocompatible method of choice for both triggering and monitoring, for applications in complex biological matrices. Herein, we designed and synthesized an N-nitroso rhodamine derivative (NOD560) as a photo-triggered and photo-calibrated NO donor to address this need. NOD560 is essentially non-fluorescent. Upon irradiation by green light (532 nm), it efficiently release NO and a rhodamine dye, the dramatic fluorescence turn-on from which could be harnessed to conveniently monitor the localization, flux, and dose of NO release. The potentials of NOD560 for in vitro biological applications were also exemplified in in vitro biological models, i.e. mesenchymal stem cell (MSC) migration suppression. NOD560 is expected to complement the existing NO donors and find widespread applications in chemical biological studies.


Assuntos
Movimento Celular , Células-Tronco Mesenquimais/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Processos Fotoquímicos , Calibragem , Células Cultivadas , Desenho de Fármacos , Fluorescência , Corantes Fluorescentes , Células HeLa , Humanos , Luz , Células-Tronco Mesenquimais/citologia
16.
Anal Chem ; 90(9): 5803-5809, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29630350

RESUMO

A hallmark of cancer cells is a reversed transmembrane pH gradient, which could be exploited for robust and convenient intraoperative histopathological analysis. However, pathologically relevant pH changes are not significant enough for sensitive detection by conventional Henderson-Hasselbalch-type pH probes, exhibiting an acid-base transition width of 2 pH units. This challenge could potentially be addressed by a pH probe with a reduced acid-base transition width (i.e., Hill-type probe), appropriate p Ka, and membrane permeability. Yet, a guideline to allow rational design of such small-molecule Hill-type pH probes is still lacking. We have devised a novel molecular mechanism, enabled sequential protonation with high positive homotropic cooperativity, and synthesized small-molecule pH probes (PHX1-3) with acid-base transition ranges of ca. 1 pH unit. Notably, PHX2 has a p Ka of 6.9, matching the extracellular pH of cancer cells. Also, PHX2 is readily permeable to cell membrane and allowed direct mapping of both intra- and extracellular pH, hence the transmembrane pH gradient. PHX2 was successfully used for rapid and high-contrast distinction of fresh unprocessed biopsies of cancer cells from normal cells and therefore has broad potentials for intraoperative analysis of cancer surgery.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Sondas Moleculares/química , Bibliotecas de Moléculas Pequenas/química , Animais , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular
17.
J Phys Chem A ; 121(14): 2780-2789, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28332401

RESUMO

Excited state dynamics of 5-azacytosine (5-AC), 2,4-diamino-1,3,5-triazine (2,4-DT), and 2-amino-1,3,5-triazine (2-AT) were comprehensively investigated by steady state absorption, fluorescence, and femtosecond transient absorption measurements. Time-dependent density functional theory (TDDFT) calculations were performed to help assign the absorption bands and understand the excited state decay mechanisms. The experimental results of excited singlet state dynamics for 5-AC, 2,4-DT, and 2-AT with femtosecond time resolution were reported for the first time. Two distinct decay pathways, with ∼1 ps and tens of picosecond lifetimes, were observed in 5-AC. Only one decay pathway with 17 ps lifetime was observed in 2,4-DT while an emissive state was found in 2-AT. TDDFT calculations suggest that 5-AC has a dark nπ* (S1) state below the first allowed ππ* (S2) state, which leads to the ultrafast decay of the ππ* state. In 2,4-DT, there is no dark nπ* state below the bright ππ* (S1) state and the 17 ps lifetime is assigned to the relaxation from the ππ* (S1) state to ground state. Two dark nπ* states (S1 and S2) were found in 2-AT, which exhibits much more complex excited state dynamics compared with the other two. Photoluminescence in 2-AT has been confirmed to be fluorescence emission from its bright ππ* (S3) state. Our results strongly suggest that electronic structures are very sensitive to the substitution on the triazine ring and that the photophysical properties of nucleic acid analogues depend highly on their molecular structures.

18.
Appl Spectrosc ; 70(10): 1733-1738, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324423

RESUMO

In this paper, we report a pyridinium salt "turn-on" fluorescent probe, 4-[2-(4-Dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (p-DASPMI), and applied its time-resolved fluorescence (TRF) to monitor the protein conformational changes. Both the fluorescence lifetime and quantum yield (QY) of p-DASPMI were increased about two orders of magnitude after binding to the protein bovine serum albumin (BSA). The free p-DASPMI in solution presents an ultrashort fluorescence lifetime (12.4 ps), thus it does not interfere the detection of bound p-DASPMI which has nanosecond fluorescence lifetime. Decay-associated spectra (DAS) show that p-DASPMI molecules bind to subdomains IIA and IIIA of BSA. The TRF decay profiles of p-DASPMI can be described by multi-exponential decay function ([Formula: see text]), and the obtained parameters, such as lifetimes ([Formula: see text]), fractional amplitudes ([Formula: see text]), and fractional intensities ([Formula: see text]), may be used to deduce the conformational changes of BSA. The pH and Cu2+ induced conformational changes of BSA were investigated through the TRF of p-DASPMI. The results show that the p-DASPMI is a candidate fluorescent probe in studying the conformational changes of proteins through TRF spectroscopy and microscopy in the visible range.

19.
Appl Spectrosc ; 70(7): 1195-201, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231333

RESUMO

In this paper, two pyridinium styryl dyes, [2-(4-dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (DASPMI), were synthesized and characterized by steady state fluorescence spectroscopy as well as picosecond and femtosecond time-resolved fluorescence spectroscopies. Both dyes exhibit large Stokes shifts and fluorescence decays equivalent to the instrument response function (IRF) standards employed in time-correlated single-photon counting. Due to their styryl and pyridinium moieties, DASPMIs have higher peak fluorescence intensity and shorter excited-state lifetimes than iodide ion-quenched fluorophores. The fluorescence lifetimes of o-DASPMI and p-DASPMI were measured to be 6.6 ps and 12.4 ps, respectively. The fluorescence transients of these DASPMIs were used as the IRFs for iterative reconvolution fitting of the time-resolved fluorescence decay profiles of Rhodamine B (RhB), sulforhodamine B (SRB), and the SRB-SRB2m RNA aptamer complex. The quality of the fits employing the DASPMI-derived IRFs are consistently equivalent to those employing IRFs obtained from light scattering. These results indicate that DASPMI-derived IRFs may be suited for a broad range of applications in time-resolved spectroscopy and fluorescence lifetime imaging microscopy (FLIM), especially in the visible emission range.

20.
J Photochem Photobiol B ; 149: 243-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26111991

RESUMO

Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.


Assuntos
Dipeptídeos/química , Água/química , Transporte de Elétrons , Cinética , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA