Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38376702

RESUMO

The objective of this preclinical study was to evaluate the feasibility and safety of transcatheter endocardial alginate hydrogel injection (TEAi) in a large animal model, utilizing the high-stiffness XDROP® alginate hydrogel in combination with the dedicated EndoWings® catheter-based system. All swine (n = 9) successfully underwent TEAi without complications. Acute results from a subset of animals (n = 5) demonstrated the ability of the catheter to access a wide range of endomyocardial areas and achieve consecutive circumferential hydrogel distribution patterns within the mid-left ventricular wall. Histological examinations at 6 months (n = 4) demonstrated that the XDROP® remained localized within the cardiac tissue. In addition, serial echocardiographic imaging showed that XDROP® had no adverse impacts on LV systolic and diastolic functions. In conclusion, this innovative combination technology has the potential to overcome the translational barriers related to alginate hydrogel delivery to the myocardium.

2.
Front Pharmacol ; 11: 626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499695

RESUMO

Nϵ-carboxymethyl-lysine (CML), an advanced glycation end product, is involved in vascular calcification (VC) in diabetic atherosclerosis. This study aimed to investigate the effects of CML on VC in diabetic atherosclerosis induced by vascular smooth muscle cell (VSMC)-derived foam cells. Human studies, animal studies and cell studies were performed. The human study results from 100 patients revealed a poor blood glucose and lipid status and more severe coronary lesions and stenosis in patients with coronary artery disease and diabetes mellitus. Intraperitoneal injection of streptozotocin combined with a high-fat diet was used to build a diabetic atherosclerosis model in ApoE-/- mice. The animal study results indicated that CML accelerated VC progression in diabetic atherosclerosis by accelerating the accumulation of VSMC-derived foam cells in ApoE-/- mice. The cell study results illustrated that CML induced VSMC-derived foam cells apoptosis and aggravated foam cells calcification. Consistent with this finding, calcium content and the expression levels of alkaline phosphatase, bone morphogenetic protein 2 and runt-related transcription factor 2 were significantly elevated in A7r5 cells treated with oxidation-low-density lipoprotein and CML. Thus, we concluded that CML promoted VSMC-derived foam cells calcification to aggravate VC in diabetic atherosclerosis, providing evidence for the contribution of foam cells to diabetic VC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA