Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8068, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580830

RESUMO

In this study, we deposited Ti3C2Tx-modified, rare-earth-doped PbO2 on the surface of a carbon fabric via electrodeposition. The surface morphology and electronic structure of the electrode were characterized with SEM, XRD and XPS. The layered Ti3C2Tx did not change the structure of ß-PbO2, and at the same time, it improved the crystallinity of the material and reduced the grains of PbO2. Electrochemical experiments showed that the addition of Ti3C2Tx increased the electrochemical activity of the electrode and produced more H2O2, which contributed to the degradation of pollutants. The efficiency of sulfamethoxazole (SMX) degradation reached 95% after 120 min at pH 3 with a current density of 50 mA/cm2. Moreover, the electrode has good cycling performance, and the degradation efficiency was still 80% after 120 min after 10 cycles of recycling. Based on the intermediates identified by HPLC‒MS, a mechanism for SMX degradation was proposed. Our results will provide a new idea for the development of efficient electrocatalytic degradation of antibiotics.

2.
Dalton Trans ; 52(6): 1671-1679, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36648504

RESUMO

The exploration of ruthenium complexes as anticancer drugs has been the focus of intense investigation. In this study, we synthesized and characterized four C,N-cyclometalated ruthenium(II) complexes (Ru1-Ru4) coordinated with pyridine-functionalized N-heterocyclic carbene (NHC) and auxiliary ligands (e.g., acetonitrile, 1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline). X-ray diffraction analysis showed that all of the four cycloruthenated complexes are hexa-coordinated in a typical octahedral geometry. In vitro cytotoxic studies revealed that cyclometalated Ru-NHC complexes Ru3 and Ru4 had stronger anticancer activity than their corresponding Ru-NHC precursor Ru1 and the clinically used cisplatin. For HeLa cells, Ru3 and Ru4 exhibited potent cytotoxicity with the IC50 value of 4.31 ± 0.42 µM and 3.14 ± 0.23 µM, respectively, which was approximately three times lower than that of cisplatin. More interestingly, Ru3 and Ru4 not only effectively inhibited the proliferation of HeLa cells, but also exhibited potential anti-migration activity. In the scratch wound healing assay, Ru3 and Ru4 treatment significantly reduced the wound healing rate of HUVEC cells. Mechanistic studies showed that Ru3 and Ru4 caused a dual action mode of mitochondrial membrane depolarization and endoplasmic reticulum stress and finally induced apoptosis of HeLa cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Células HeLa , Fenantrolinas/farmacologia , Cisplatino/farmacologia , Rutênio/farmacologia , Antineoplásicos/farmacologia , Apoptose , Estresse do Retículo Endoplasmático , Mitocôndrias , Complexos de Coordenação/farmacologia , Ligantes
3.
Nanoscale Adv ; 4(16): 3362-3369, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131714

RESUMO

Owing to their enhanced catalytic stability and cyclability, two-dimensional (2D) material-supported Pd-based bimetallic alloys have promising applications for catalytic reactions. Furthermore, the alloying strategy can effectively reduce costs and improve catalytic performance. In this paper, we report a one-step reduction method to synthesize a novel heterogeneous catalyst, PdCu@Ti3C2, with good catalytic performance. The composition and structure of the as-prepared catalyst were characterized by inductively coupled plasma-mass spectrometry (ICP-MS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The catalyst particles, which were identified as a PdCu bimetallic alloy, exhibited good dispersion on the substrate. The performance of the catalyst in the Suzuki-Miyaura coupling reaction was studied, and the results showed that PdCu@Ti3C2 had excellent catalytic activity, similar to that of homogeneous Pd catalysts such as Pd(PPh3)4. Moreover, the prepared catalyst could be reused at least 10 times in the Suzuki-Miyaura coupling reaction with high yield.

4.
Sci Rep ; 8(1): 7396, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743558

RESUMO

In the present study, a novel method has been carried out to grow tungsten (W) doped molybdenum disulfide (MoS2) on the graphene transferred TEM grid in a chemical vapor deposition (CVD) setup. Tungsten trioxide (WO3) has been used as a source for 'W' while 'Mo' has been derived from Mo based substrate. Different experimental parameters were used in this experiment. Higher gas flow rate decreases the size of the sample flake and on other side increases the dopant concentrations. The interaction mechanism between Mo, S, W and oxygen (O) have been explored. The influence of oxygen seems to be not avoidable completely which also imposes effective growth condition for the reaction of Mo with incoming sulfur atoms. The difference in the migration energies of Mo, WO3, S clusters on the graphene and the higher reactivity of Mo clusters over other possibly formed atomic clusters on the graphene leads to the growth of W doped MoS2 monolayers. Formation of MoS2 monolayer and the nature of edge doping of 'W' is explained well with the crystal model using underlying nucleation principles. We believe our result provide a special route to prepare W doped MoS2 on graphene substrate in the future.

5.
Nanotechnology ; 29(31): 314001, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29745368

RESUMO

Understanding the microscopic mechanisms for the nucleation and growth of two-dimensional molybdenum diselenide (2D MoSe2) via chemical vapor deposition (CVD) is crucial towards the precisely controlled growth of the 2D material. In this work, we employed a joint use of transmission electron microscopy and CVD, in which the 2D MoSe2 were directly grown on a graphene membrane based on grids, that enables the microstructural characterization of as-grown MoSe2 flakes. We further explore the role of hydrogen gas and find: in an argon ambient, the primary products are few-layer MoSe2 flakes, along with MoO x nanoparticles; while with the introduction of H2, single-layer MoSe2 became the dominant product during the CVD growth. Quantitative analysis of the effects of H2 flow rate on the flake sizes, and areal coverage was also given. Nevertheless, we further illuminated the evolution of shape morphology and edge structures of single-layer MoSe2, and proposed the associated growth routes during a typical CVD process.

6.
Nanotechnology ; 29(14): 145603, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384131

RESUMO

Herein we report the successful doping of tellurium (Te) into molybdenum disulfide (MoS2) monolayers to form MoS2x Te2(1-x) alloy with variable compositions via a hydrogen-assisted post-growth chemical vapor deposition process. It is confirmed that H2 plays an indispensable role in the Te substitution into as-grown MoS2 monolayers. Atomic-resolution transmission electron microscopy allows us to determine the lattice sites and the concentration of introduced Te atoms. At a relatively low concentration, tellurium is only substituted in the sulfur sublattice to form monolayer MoS2(1-x)Te2x alloy, while with increasing Te concentration (up to ∼27.6% achieved in this study), local regions with enriched tellurium, large structural distortions, and obvious sulfur deficiency are observed. Statistical analysis of the Te distribution indicates the random substitution. Density functional theory calculations are used to investigate the stability of the alloy structures and their electronic properties. Comparison with experimental results indicate that the samples are unstrained and the Te atoms are predominantly substituted in the top S sublattice. Importantly, such ultimately thin Janus structure of MoS2(1-x)Te2x exhibits properties that are distinct from their constituents. We believe our results will inspire further exploration of the versatile properties of asymmetric 2D TMD alloys.

7.
Sci Bull (Beijing) ; 62(12): 846-851, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659318

RESUMO

The microscopic process of oxidative etching of two-dimensional molybdenum disulfide (2D MoS2) at an atomic scale is investigated using a correlative transmission electron microscope (TEM)-etching study. MoS2 flakes on graphene TEM grids are precisely tracked and characterized by TEM before and after the oxidative etching. This allows us to determine the structural change with an atomic resolution on the edges of the domains, of well-oriented triangular pits and along the grain boundaries. We observe that the etching mostly starts from the open edges, grain boundaries and pre-existing atomic defects. A zigzag Mo edge is assigned as the dominant termination of the triangular pits, and profound terraces and grooves are observed on the etched edges. Based on the statistical TEM analysis, we reveal possible routes for the kinetics of the oxidative etching in 2D MoS2, which should also be applicable for other 2D transition metal dichalcogenide materials like MoSe2 and WS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA