Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Stem Cells Dev ; 33(3-4): 67-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032751

RESUMO

The histamine H3 receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H3 receptor antagonists could facilitate nerve regeneration by promoting the histamine H1 receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H3 receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H3 receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca2+. Our study provided an experimental foundation for the potential application of histamine H3 receptor-targeted modulators in the field of neuroregeneration.


Assuntos
Histamina , Piperidinas , Receptores Histamínicos H3 , Camundongos , Animais , Histamina/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Receptores Histamínicos H3/metabolismo
2.
Perioper Med (Lond) ; 12(1): 12, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076883

RESUMO

BACKGROUND: Vocal cord polyp is common otorhinolaryngological disease, traditionally treated by vocal cord polypectomy under a supporting laryngoscope with general anaesthesia. Although it is safe and controllable, it would cause some anaesthesia complications. Moreover, the complex process of general anaesthesia may significantly reduce surgical efficiency. Avoiding these problems remains an important issue. METHODS: All patients were subjected to the standard non-intubated deep paralysis (NIDP) protocol consisting of four phases. An emergency plan was launched when NIDP cannot be implemented successfully. Patient characteristics, blood gas and monitoring data were collected during NIDP. Data concerning satisfaction, complications and duration of anaesthesia and recovery were collected to assess its effectiveness. RESULT: Among 20 enrolled patients, the success rate of NIDP was 95%. Only one patient failed in completing NIDP. Blood gas analysis revealed that the partial pressure of oxygen and carbon dioxide was maintained at safe levels. Monitoring during NIDP revealed fluctuations in mean arterial pressure between 110 and 70 mmHg, and the heart rate was stable at 60-100 beats per minute. The duration of anaesthesia and postoperative recovery were 13.0 ± 2.84 and 5.47 ± 1.97 min, respectively. All patients and surgeons were satisfied with NIDP, and no complications were detected before discharge. CONCLUSION: NIDP can be safely applied to patients and can replace general anaesthesia in vocal cord polypectomy. It can significantly reduce the duration of anaesthesia and postoperative recovery. No anaesthesia complications occurred without intubation, and patients and surgeons were satisfied with NIDP. TRIAL REGISTRATIONS: This single-centre, prospective study was registered on clinicaltrial.gov (NCT04247412) on 30th July 2020.

3.
Arch Toxicol ; 97(5): 1385-1396, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36826473

RESUMO

Bortezomib (BTZ) is a proteasome inhibitor serves as a first-line drug for multiple myeloma treatment. BTZ-induced peripheral neuropathy (BIPN) is the most common adverse effect of BTZ with an incidence as high as 40-60%. However, the pathological mechanisms underlying BIPN remain largely unclear. BTZ leads to dramatic Schwann cell demyelination in sciatic nerves. Previous studies implied that myelin debris was predominantly degraded via autophagy-lysosome pathway in Schwann cells. However, the association of autophagy with BIPN has not been made. Mice were treated with BTZ (2 mg/kg, i.v.) on Day1 and Day4 each week for continuous 4 weeks. BTZ-treated mice showed enhanced mechanical hyperalgesia, decreased tail nerve conduction and sciatic nerve demyelination. Unexpectedly, BTZ led to the accumulation of autophagic vesicles, LC3-II and p62 in the sciatic nerve. Moreover, BTZ blocked autophagic flux in RSC96 Schwann cells as determined by mcherry-GFP-LC3 assay, suggesting BTZ may impair lysosomal function rather than inducing autophagy in Schwann cells. BTZ significantly reduced the lysosomal activity in Schwann cells as determined by reduced LysoTracker Red and DQ-Red-BSA staining and increased the level of immature Cathepsin B (CTSB). Remarkably, lysosomal activators PP242 and Torin1, significantly reversed the blockage of autophagic flux by BTZ. We further verified that Torin1 rescued the demyelination, nerve conduction and reduced the mechanical hyperalgesia in BIPN mice. Additionally, Torin1 did not compromise the efficacy of BTZ in suppressing multiple myeloma RPMI8226 cell. Taken together, we identified that lysosomal dysfunction in Schwann cells caused by BTZ is involved in the BIPN pathology. Improved lysosomal function in Schwann cells can be a promising strategy for BIPN treatment.


Assuntos
Doenças Desmielinizantes , Mieloma Múltiplo , Síndromes Neurotóxicas , Camundongos , Animais , Bortezomib/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Hiperalgesia/induzido quimicamente , Células de Schwann/patologia , Síndromes Neurotóxicas/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia
4.
World J Pediatr ; 19(2): 170-179, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399311

RESUMO

BACKGROUND: Pediatric liver transplantation is an important modality for treating biliary atresia. The overall survival (OS) rate of pediatric liver transplantation has significantly improved compared with that of 20 years ago, but it is still unsatisfactory. The anesthesia strategy of maintaining low central venous pressure (CVP) has shown a positive effect on prognosis in adult liver transplantation. However, this relationship remains unclear in pediatric liver transplantation. Thus, this study was conducted to review the data of pediatric living-donor liver transplantation to analyze the associations of different CVP levels with the prognosis of recipients. METHODS: This was a retrospective study and the patients were divided into two groups according to CVP levels after abdominal closure: low CVP (LCVP) (≤ 10 cmH2O, n = 470) and high CVP (HCVP) (> 10 cmH2O, n = 242). The primary outcome measured in the study was the overall survival rate. The secondary outcomes included the duration of mechanical ventilation in the intensive care unit (ICU), length of stay in the ICU, and postoperative stay in the hospital. Patient demographic and perioperative data were collected and compared between the two groups. Kaplan-Meier curves were constructed to determine the associations of different CVP levels with the survival rate. RESULTS: In the study, 712 patients, including 470 in the LCVP group and 242 in the HCVP group, were enrolled. After propensity score matching, 212 pairs remained in the group. The LCVP group showed a higher overall survival rate than the HCVP group in the Kaplan-Meier curves and multivariate Cox regression analyses (P = 0.018), and the HCVP group had a hazard ratio of 2.445 (95% confidence interval, 1.163-5.140). CONCLUSION: This study confirmed that a low-CVP level at the end of surgery is associated with improved overall survival and a shorter length of hospital stay.


Assuntos
Transplante de Fígado , Adulto , Humanos , Criança , Pressão Venosa Central , Doadores Vivos , Estudos Retrospectivos , Prognóstico
5.
Nat Sci Sleep ; 14: 1829-1842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263372

RESUMO

Purpose: This study investigated the associations of peripheral iron status with different manifestations of restless legs syndrome (RLS), including leg movements (LMs) on polysomnography (PSG), disease severity, and impact on patients. Patients and Methods: In this cross-sectional study, 108 patients with RLS were enrolled at Sir Run Run Shaw Hospital's Center for Sleep Medicine. Demographic information, disease characteristics, RLS severity, and impact on patients were assessed through a semi-structured questionnaire. Peripheral iron indicators [serum ferritin, iron, and transferrin concentrations; unsaturated iron-binding capacity (UIBC) and total iron-binding capacity (TIBC); transferrin saturation (TSAT)] were measured following PSG to assess sleep stages, respiratory events, microarousals and LM parameters. Data from patients with and without ferritin concentration < 50 µg/L were compared in crude analyses, and Spearman correlations of other iron indicators with RLS data were examined. An ordinal logistic regression model was used to adjust for age, sex, body mass index, years of education, age at the time of RLS onset, prior treatment (yes/no), C-reactive protein (CRP)/hemoglobin level, total sleep time and apnea-hypopnea index. Results: Multivariate analysis showed that periodic LMs during sleep (PLMS) and other LM parameters were significantly associated with a ferritin concentration < 50 µg/L, UIBC, TIBC, and serum transferrin concentration, but not serum iron or TSAT. By contrast, the severity and impact of RLS were not associated with a ferritin concentration < 50 µg/L or other peripheral iron indicators in the multivariate model. Conclusion: In this study, peripheral iron status was associated mainly with motor components (LMs on PSG) rather than sensory components (severity and impact of RLS) after adequately controlling for potential confounders, such as CRP and hemoglobin levels. Commonly used peripheral iron metabolism indicators may therefore not be ideal biomarkers of RLS severity or impact on patients.

6.
Sleep Breath ; 26(1): 373-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33864178

RESUMO

PURPOSE: Augmentation is a major complication of long-term pramipexole treatment of restless legs syndrome (RLS). However, there have been no studies on augmentation in Chinese patients with RLS. We therefore investigated the clinical characteristics of augmentation in RLS patients treated with pramipexole in a real-world Chinese setting. METHODS: This study was an observational, retrospective assessment of 103 patients with RLS, who had been continuously treated with pramipexole for at least one month between January 2016 and December 2018 in a tertiary hospital in East China. Demographic data and disease and drug treatment information were collected from electronic medical records and telephone interviews to analyze the rate and clinical features of augmentation. Augmentation was confirmed by Max Planck Institute criteria. Comparisons were made between patients with and without augmentation. RESULTS: Fifteen patients (15%) were classified as having augmentation. Compared to RLS patients without augmentation, more patients with augmentation switched from other dopaminergic drugs (P<0.05) and had a longer duration of RLS symptoms before pramipexole treatment (P<0.05). In addition, patients with augmentation had a longer duration (P<0.05) and higher dosage (P<0.05) of pramipexole than those without augmentation. Augmentation was possibly associated with pramipexole tolerance (P<0.01). CONCLUSION: The augmentation rate of the Chinese RLS patients in our study was 15%. Augmentation may be associated with switching from other dopaminergic drugs, long disease duration before pramipexole use, the dose and duration of pramipexole, and tolerance to pramipexole.


Assuntos
Progressão da Doença , Agonistas de Dopamina/efeitos adversos , Pramipexol/efeitos adversos , Síndrome das Pernas Inquietas/tratamento farmacológico , Adulto , Idoso , China , Agonistas de Dopamina/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pramipexol/uso terapêutico , Estudos Retrospectivos
7.
Acta Pharmacol Sin ; 43(1): 229-239, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33767381

RESUMO

Androgen receptor (AR), a ligand-activated transcription factor, is a master regulator in the development and progress of prostate cancer (PCa). A major challenge for the clinically used AR antagonists is the rapid emergence of resistance induced by the mutations at AR ligand binding domain (LBD), and therefore the discovery of novel anti-AR therapeutics that can combat mutation-induced resistance is quite demanding. Therein, blocking the interaction between AR and DNA represents an innovative strategy. However, the hits confirmed targeting on it so far are all structurally based on a sole chemical scaffold. In this study, an integrated docking-based virtual screening (VS) strategy based on the crystal structure of the DNA binding domain (DBD) of AR was conducted to search for novel AR antagonists with new scaffolds and 2-(2-butyl-1,3-dioxoisoindoline-5-carboxamido)-4,5-dimethoxybenzoicacid (Cpd39) was identified as a potential hit, which was competent to block the binding of AR DBD to DNA and showed decent potency against AR transcriptional activity. Furthermore, Cpd39 was safe and capable of effectively inhibiting the proliferation of PCa cell lines (i.e., LNCaP, PC3, DU145, and 22RV1) and reducing the expression of the genes regulated by not only the full-length AR but also the splice variant AR-V7. The novel AR DBD-ARE blocker Cpd39 could serve as a starting point for the development of new therapeutics for castration-resistant PCa.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , DNA/antagonistas & inibidores , Descoberta de Drogas , Simulação de Acoplamento Molecular , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Sítios de Ligação/efeitos dos fármacos , DNA/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Receptores Androgênicos/química , Relação Estrutura-Atividade
8.
J Biochem Mol Toxicol ; 35(5): e22737, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751715

RESUMO

Homocysteine (Hcy) is a sulfur-containing amino acid that originated in methionine metabolism and the elevated level of Hcy in plasma is considered to be an independent risk factor for cardiovascular diseases (CVD). Endothelial dysfunction plays a major role in the development of CVD, while the potential mechanism of Hcy-induced endothelial dysfunction is still unclear. Here, in Hcy-treated endothelial cells, we observed the destruction of mitochondrial morphology and the decline of mitochondrial membrane potential. Meanwhile, the level of ATP was reduced and the reactive oxygen species was increased. The expressions of dynamin-related protein 1 (Drp1) and phosphate-Drp1 (Ser616) were upregulated, whereas the expression of mitofusin 2 was inhibited by Hcy treatment. These findings suggested that Hcy not only triggered mitochondrial dysfunction but also incurred an imbalance of mitochondrial dynamics in endothelial cells. The expression of mitochondrial calcium uniporter (MCU) was activated by Hcy, contributing to calcium transferring into mitochondria. Interestingly, the formation of mitochondria-associated membranes (MAMs) was increased in endothelial cells after Hcy administration. The inositol 1,4,5-triphosphate receptor (IP3R)-glucose-regulated protein 75 (Grp75)-voltage-dependent anion channel (VDAC) complex, which was enriched in MAMs, was also increased. The accumulation of mitochondrial calcium could be blocked by inhibiting with the IP3R inhibitor Xestospongin C (XeC) in Hcy-treated cells. Then, we confirmed that the mitochondrial dysfunction and the increased mitochondrial fission induced by Hcy could be attenuated after Hcy and XeC co-treatment. In conclusion, Hcy-induced mitochondrial dysfunction and dynamics disorder in endothelial cells were mainly related to the increase of calcium as a result of the upregulated expressions of the MCU and the IP3R-Grp75-VDAC complex in MAMs.


Assuntos
Cálcio/metabolismo , Homocisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Homocisteína/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mitocôndrias/patologia
9.
Chem Phys ; 542: 111080, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33519023

RESUMO

Coronavirus disease 2019 (COVID-19) has caused more than 840,000 deaths as of 31 August 2020 in the whole world. The COVID-19 main protease (Mpro) has been validated as an attractive target for drug design. In this work, the binding mechanisms of five protease inhibitors (e.g., danoprevir, darunavir, ASC09, lopinavir and ritonavir) to COVID-19 Mpro were investigated. Based on the docking score, five protease inhibitors structures were selected for further evaluation. It is found that most of the selected drug molecules bind stably to the COVID-19 Mpro from the molecular dynamics simulation. Moreover, the MM/PBSA free energy calculations suggest that lopinavir with positive charge might be most active against COVID-19 Mpro.

10.
Acta Pharmacol Sin ; 42(11): 1790-1797, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33547375

RESUMO

Rictor is a key component of the mammalian target of rapamycin complex 2 (mTORC2) and is required for Akt phosphorylation (Ser473). Our previous study shows that knockdown of Rictor prevents cardiomyocyte differentiation from mouse embryonic stem (ES) cells and induces abnormal electrophysiology of ES cell-derived cardiomyocytes (ESC-CMs). Besides, knockdown of Rictor causes down-expression of connexin 43 (Cx43), the predominant gap junction protein, that is located in both the sarcolemma and mitochondria in cardiomyocytes. Mitochondrial Cx43 (mtCx43) plays a crucial role in mitochondrial function. In this study, we used the model of cardiomyocyte differentiation from mouse ES cells to elucidate the mechanisms for the mitochondrial damage in ESC-CMs after knockdown of Rictor. We showed swollen and ruptured mitochondria were observed after knockdown of Rictor under transmission electron microscope. ATP production and mitochondrial transmembrane potential were significantly decreased in Rictor-knockdown cells. Furthermore, knockdown of Rictor inhibited the activities of mitochondrial respiratory chain complex. The above-mentioned changes were linked to inhibiting the translocation of Cx43 into mitochondria by knockdown of Rictor. We revealed that knockdown of Rictor inactivated the mTOR/Akt signalling pathway and subsequently decreased HDAC6 expression, resulted in Hsp90 hyper-acetylation caused by HDAC6 inhibition, thus, inhibited the formation of Hsp90-Cx43-TOM20 complex. In conclusion, the mitochondrial Cx43 participates in shRNA-Rictor-induced mitochondrial function damage in the ESC-CMs.


Assuntos
Conexina 43/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Animais , Diferenciação Celular/fisiologia , Conexina 43/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Proteína Companheira de mTOR Insensível à Rapamicina/antagonistas & inibidores , Proteína Companheira de mTOR Insensível à Rapamicina/genética
11.
Oncol Lett ; 20(5): 230, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32968452

RESUMO

The aim of the present study was to establish a novel docetaxel-resistant prostate cancer cell line and investigate its biological characteristics. The human prostate cell line, PC-3, was exposed to docetaxel, the concentrations of which were increased in a stepwise manner in the medium to select the drug-resistant cell line, PC-3/DTX. The morphological features were observed using inverted microscopy. The growth curves of PC-3 and PC-3/DTX cells were drawn to calculate the doubling time. Flow cytometry was performed to determine cell-cycle distribution. A 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide assay was performed to test the drug resistance of PC-3 and PC-3/DTX cells. Western blot analysis was conducted to determine the protein expression levels of the mammalian target of rapamycin (mTOR) signaling pathway, which may serve a role in regulating drug resistance in the two cell lines. PC-3/DTX cells exhibited changes in morphology, proliferation rate, doubling time and cell-cycle distributions, compared with PC-3 cells. PC-3/DTX cells were 10.9-fold resistant to docetaxel in comparison with PC-3 cells. The results showed that PC-3/DTX cells overexpressed Rictor and p-AKT(S473) proteins, which are specific subunits or downstream substrates of mTORC2. The new findings suggested that the mTORC2 signaling pathway may serve an important role in the regulation of docetaxel drug resistance of PC-3 cells. In conclusion, PC-3/DTX cells may be applied to study the resistance of anticancer drugs and to identify methods to overcome resistance.

12.
Toxicol In Vitro ; 69: 104988, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861759

RESUMO

Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to cause cardiotoxicity in animals and humans. It has been demonstrated that PFOS exposure down-regulates expression of cardiac-development related genes and proteins. However, the related mechanism of PFOS has not been fully elucidated. In the present study, the embryonic stem (ES) cells-derived cardiomyocytes (ESC-CMs) was employed to investigate PFOS-mediated mechanism in developmental toxicity of cardiomyocytes. Our previous study shows that PFOS induces cardiomyocyte toxicity via causing mitochondrial damage. Nevertheless, the underlying mechanism by which PFOS affects the autophagy-related mitochondrial toxicity in ESC-CMs remains unclear. Here, we found that PFOS induced the swelling of mitochondria and the autophagosome accumulation in ESC-CMs at 40 µM concentration. PFOS increased the levels of LC3-II, p62, and ubiquitinated proteins. PFOS also induced an increase of LC3 and p62 localization into mitochondria, indicating that mitophagy degradation was impaired. The results of autophagic flux using chloroquine and RFP-GFP-LC3 analysis showed that the accumulation of autophagosome was not caused by the formation but by the impaired degradation. PFOS was capable of blocking the fusion between autophagosome and lysosome. PFOS caused dysfunction of lysosomes because it down-regulated Lamp2a and cathepsin D, but it did not induced lysosome membrane permeabilization. Meanwhile, PFOS-mediated lysosomal function and the inhibitory effect of autophagic flux could be reversed by PP242 at 40 nM concentration, an mTOR inhibitor. Furthermore, PP242 restored PFOS-induced ATP depletion and mitochondrial membrane potential. In conclusion, PFOS induced mitochondrial dysfunction via blocking autophagy-lysosome degradation, leading to cardiomyocyte toxicity from ES cells.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Autofagia/efeitos dos fármacos , Fluorocarbonos/toxicidade , Lisossomos/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/efeitos dos fármacos
13.
Chem Res Toxicol ; 33(4): 940-947, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32162908

RESUMO

Columbin, a furanoid compound, is the major bioactive ingredient of Tinospora sagittata (Oliv.) Gagnep, a traditional Chinese medicine that has been reported to cause liver injury in the clinic. The aim of this study was to investigate the hepatotoxicity caused by columbin and its underlying mechanism. Our results indicated that columbin could result in a dose-dependent increase of mice serum alanine aminotransferase and aspartate aminotransferase after oral treatment with columbin, as well as local spotty necrosis in the liver of mice treated with columbin. No hepatotoxicity was observed in mouse treated with the same dose of tetrahydrocolumbin. Pretreatment with ketoconazole preserved the mice from columbin-induced hepatotoxicity. Further studies suggested that bioactivation of the furan ring played an indispensable role in columbin-caused hepatotoxicity. In vitro and in vivo metabolism studies demonstrated that columbin could be metabolized into the cis-butene-1,4-dial intermediate, which readily reacted with glutathione and N-acetyllysine to form stable adducts. Ketoconazole displayed strong inhibitory effect on the generation of M4 and M5 both in vitro and in vivo. Further recombinant human CYP450 screening demonstrated that CYP3A4 was the major enzyme responsible for columbin bioactivation. The present study demonstrated that columbin was hepatotoxic and CYP3A4-mediated bioactivation of the furan ring would serve as an underlying mechanism for columbin-induced hepatotoxicity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/toxicidade , Lactonas/toxicidade , Fígado/efeitos dos fármacos , Administração Oral , Animais , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Lactonas/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
14.
Life Sci ; : 117050, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31730864

RESUMO

This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

15.
J Neurosci Methods ; 328: 108441, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574288

RESUMO

BACKGROUND: Recombinant adeno-associated virus (rAAV) is increasingly applied in neuroscience research or gene therapy. However, there is no simple and efficient tool for specific transfection of rAAV into cerebrovascular tissues. It has been reported that fluorescent tracers or beta-amyloid protein can enter the brain through perivascular spaces, named as "glymphatic system". The purpose of this study was to explore whether rAAV could transduce the cerebral vasculature through the glymphatic pathway. NEW METHOD: An AAV1-GFP vector suspension (15 µL) was injected into the intracisternal space of anesthetized mice (n = 2) and 5 µl was injected into the bulbus medullae (n = 2). As controls, 15 µl of artificial cerebrospinal fluid (aCSF) was injected into the cisterna magna. The endothelial specific transduction was verified by Glut1 or PDGFRß immunofluorescent staining. Immunofluorescence images for all groups were captured with a laser microscope. RESULTS: It was observed that infection with rAAV1 vectors encoding green fluorescence protein resulted in a successful cerebrovascular transduction when injected into cisterna magna, compared to aCSF or intra-parenchymal injection at 30 days post-transduction in adult mice. In addition, GFP was co-localized with Glut1 based on immuno-fluorescence. These results indicate that glymphatic system delivery enhances the transduction efficiency of AAV1 to brain endothelial cells. COMPARISON WITH EXISTING METHODS: The AAV1 vector can simply and efficiently transduce the cerebral endothelial cells through the glymphatic pathway. CONCLUSION: The findings of this study reveal that rAAV1-based vectors have high application potential for endothelial-targeted neurologic disease research or gene-based therapies.


Assuntos
Cisterna Magna , Células Endoteliais , Sistema Glinfático , Proteínas de Fluorescência Verde , Parvovirinae , Animais , Dependovirus , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica , Transdução Genética
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(1): 65-74, 2019 05 25.
Artigo em Chinês | MEDLINE | ID: mdl-31102360

RESUMO

OBJECTIVE: To explore the expression, localization and regulatory effect on mitochondrial calcium signaling of Rictor in embryonic stem cell-derived cardiomyocytes (ESC-CMs). METHODS: Classical embryonic stem cell cardiomyogenesis model was used for differentiation of mouse embryonic stem cells into cardiomyocytes. The location of Rictor in ESC-CMs was investigated by immunofluorescence and Western blot. The expression of Rictor in mouse embryonic stem cells was interfered with lentiviral technology, then the superposition of mitochondria and endoplasmic reticulum (ER) in ESC-CMs was detected with immunofluorescence method; the cellular ultrastructure of ESC-CMs was observed by transmission electron microscope; the mitochondrial calcium transients of ESC-CMs was detected by living cell workstation;immunoprecipitation was used to detect the interaction between 1,5,5-trisphosphate receptor (IP3 receptor, IP3R), glucose-regulated protein 75 (Grp75) and voltage-dependent anion channel 1 (VDAC1) in mitochondrial outer membrane; the expression of mitochondrial fusion protein (mitonusin-2, Mfn2) was detected by Western blot. RESULTS: Rictor was mainly localized in the endoplasmic reticulum and mitochondrial-endoplasmic reticulum membrane (MAM) in ESC-CMs. Immunofluorescence results showed that Rictor was highly overlapped with ER and mitochondria in ESC-CMs. After mitochondrial and ER were labeled with Mito-Tracker Red and ER-Tracker Green, it was demonstrated that the mitochondria of the myocardial cells in the Rictor group were scattered, and the superimposition rate of mitochondria and ER was lower than that of the negative control group (P<0.01). The MAM structures were decreased in ESC-CMs after knockdown of Rictor. The results of the living cell workstation showed that the amplitude of mitochondrial calcium transients by ATP stimulation in ESC-CMs was decreased after knockdown of Rictor (P<0.01). The results of co-immunoprecipitation showed that the interaction between IP3R, Grp75 and VDAC1 in the MAM structure of the cardiomyocytes in the Rictor group was significantly attenuated (P<0.01); the results of Western blot showed that the expression of Mfn2 protein was significantly decreased (P<0.01). CONCLUSIONS: Using lentiviral technology to interfere Rictor expression in mouse embryonic stem cells, the release of calcium from the endoplasmic reticulum to mitochondria in ESC-CMs decreases, which may be affected by reducing the interaction of IP3R, Grp75, VDAC1 and decreasing the expression of Mfn2, leading to the damage of MAM structure.


Assuntos
Sinalização do Cálcio , Células-Tronco Embrionárias Murinas , Miócitos Cardíacos , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Sinalização do Cálcio/genética , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Camundongos , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Transporte Proteico , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo
17.
J Cell Biochem ; 120(3): 4355-4365, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246400

RESUMO

MicroRNAs (miRNAs) have been identified as key players in cardiogenesis and heart pathophysiological processes. However, many miRNAs are still not recognized for their roles in cardiomyocytes differentiation. In this study, we evaluated the effects of microRNA-218 (miR-218) in cardiomyocyte differentiation of the mouse embryonic stem cells (ESCs) in vitro. The percentage of the beating embryoid bodies (EBs) in miR-218 mimic-treated cells was reduced to 32% compared with miR-218 mimic negative control (56%) on day 5 + 3. The amplitude of the intracellular Ca2+ transients in the cardiomyocytes derived from ESCs was reduced upon miR-218 overexpression, followed by the decreased calcium-related proteins and cell junction proteins expressions. Besides, miR-218 expression in ESCs was related to the directional spreading ability of EBs during differentiation. The increased expression of miR-218 could promote the migration of ESCs in vitro, while the decreased expression of miR-218 could inhibit the migration by the transwell experiment. Meanwhile, miR-218 could regulate cell migration-related proteins Cdc42 and Rac1. Platelet-derived growth factor receptor α (PDGFRα) was further confirmed to be a direct target of miR-218 both physically and functionally by dual-luciferase reporter assay. Our data further described that overexpression of PDGFRα rescued the miR-218-mediated inhibition of cardiomyocyte differentiation and restored the miR-218-mediated promotion of cell migration. In conclusion, miR-218 was demonstrated to exert an inhibitory function and promoted cell migration via targeting PDGFRα during cardiomyocyte differentiation from ESCs. The current study revealed the role of miR-218 and may provide an important hint for cardiomyocyte differentiation of ESCs and induced pluripotent stem cells.


Assuntos
Diferenciação Celular , Movimento Celular , MicroRNAs/biossíntese , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Animais , Sinalização do Cálcio/genética , Linhagem Celular , Camundongos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
18.
Virol J ; 15(1): 19, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351766

RESUMO

BACKGROUND: The treatment of hepatitis C virus (HCV) in HCV/human immunodeficiency virus (HIV) co-infected patients remains complex. This present meta-analysis evaluated the efficacy and safety of Sofosbuvir (SOF) for treatment in HCV/HIV co-infected patients using the most recent and available data. METHODS: A systematic search of the published data was conducted in PubMed Medline, EMBASE and Cochrane databases. Eligible studies were clinical trials, case-control studies or prospective cohort studies aiming at assessing the efficacy and safety of the SOF-containing regimens in patients co-infected with HCV and HIV. Heterogeneity of results was assessed and a pooled analysis was performed using random effects model with maximum likelihood estimate and 95% confidence intervals (95%CI). Subgroup analysis and assessment of publication bias through Egger's test were also performed. STATA 13.0 software was used to analyze the data. RESULTS: Seven studies (n = 1167 co-infected patients) were included in this analysis. The pooled estimate of sustained virological response at 12 weeks (SVR12) was 94.0% (95%CI: 92.0%-95.0%). Subgroup analysis showed that the treatment-naïve patients had higher SVR12 compared with patients that were treated before (χ2 = 21.39, P < 0.01). The pooled incidence of any adverse events (AEs) was 79.6% (95%CI: 77.1%-82.1%). Publication bias did not exist. CONCLUSION: The results of this study showed that the treatment response of SOF-containing regimens in patients co-infected with HIV and HCV was satisfied. Attention should be paid to the high rates of AEs.


Assuntos
Antivirais/uso terapêutico , Coinfecção , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Sofosbuvir/uso terapêutico , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Quimioterapia Combinada , Genótipo , Infecções por HIV/virologia , HIV-1/genética , Hepacivirus/genética , Hepatite C Crônica/virologia , Humanos , Viés de Publicação , Sofosbuvir/administração & dosagem , Sofosbuvir/efeitos adversos , Carga Viral
19.
Int J Dev Biol ; 61(1-2): 65-72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28287249

RESUMO

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and functions through two distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2), with their key components Raptor and Rictor, to play crucial roles in cellular survival and growth. However, the roles of mTORC1 and mTORC2 in regulating cardiomyocyte differentiation from mouse embryonic stem (mES) cells are not clear. In this study, we performed Raptor or Rictor knockdown experiments to investigate the roles of mTORC1 and mTORC2 in cardiomyocyte differentiation. Ablation of Raptor markedly increased the number of cardiomyocytes derived from mES cells with well-organized myofilaments. Expression levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein), and α-Actinin (cardiomyocyte marker) were increased in Raptor knockdown cells. In contrast, loss of Rictor prevented cardiomyocyte differentiation. The dual ablation of Raptor and Rictor also decreased the number of cardiomyocytes. The two complexes exerted a regulatory mechanism in such a manner that knockdown of Raptor/mTORC1 resulted in a decreased phosphorylation of Rictor (Thr1135), which subsequently activated Rictor/mTORC2 in the differentiation of mES cells into cardiomyocytes. In conclusion, mTORC1 and mTORC2 played different roles in cardiomyocyte differentiation from mES cells in vitro. The activation of Rictor/mTORC2 was critical for facilitating cardiomyocyte differentiation from mES cells. Thus, this complex may be a promising target for regulating myocardial differentiation from embryonic stem cells or induced pluripotent stem cells.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Miócitos Cardíacos/metabolismo , Actinina/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Proteínas Fetais/metabolismo , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Fosforilação , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo
20.
Toxicology ; 382: 108-116, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28288859

RESUMO

Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant that may cause cardiotoxicity in animals and humans. However, little is known about the underlying mechanism by which it affects the organelle toxicity in cardiomyocytes during the cardiogenesis. Our previous proteomic study showed that differences of protein expression mainly existed in mitochondria of cardiomyocytes differentiated from embryonic stem (ES) cells after exposure to PFOS. Here, we focused on mitochondrial toxicity of PFOS in ES cell-derived cardiomyocytes. The cardiomyogenesis from ES cells in vitro was inhibited, and the expression of L-type Ca2+ channel (LTCC) was decreased to interrupt [Ca2+]c transient amplitude in cardiomyocytes after PFOS treatment. Transmission electron microscope revealed that swollen mitochondrion with vacuole in PFOS-treated cells. Meanwhile, mitochondrial transmembrane potential (ΔΨm) was declined and ATP production was lowered. These changes were related to the increased EGFR phosphorylation, activated Rictor signaling, then mediated HK2 binding to mitochondrial membrane. Furthermore, PFOS reduced the interaction of IP3R-Grp75-VDAC and accumulated intracellular fatty acids by activating Rictor, thereby attenuating PGC-1α and Mfn2 expressions, then destroying mitochondria-associated endoplasmic reticulum membrane (MAM), which resulted in the decrease of [Ca2+]mito transient amplitude triggered by ATP. In conclusion, mitochondrial structure damages and abnormal Ca2+ shuttle were the important aspects in PFOS-induced cardiomyocytes toxicity from ES cells by activating Rictor signaling pathway.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Receptores ErbB/metabolismo , Ácido Láctico/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias Cardíacas/fisiologia , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA