Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399840

RESUMO

Water-based chloroprene latex is a solvent-free, environmentally friendly adhesive. Currently, its market demand is growing rapidly. However, there are problems such as a lack of heat resistance and poor mechanical properties, which limit its application. The introduction of vinyl-POSS (OVS) into the resin structure can effectively improve the thermal stability of chloroprene adhesives. In this paper, modified waterborne chloroprene latex was prepared by copolymerization of methyl methacrylate and OVS with chloroprene latex. The results showed that vinyl-POSS was successfully grafted onto the main chain of the waterborne chloroprene latex, and the modified waterborne chloroprene latex had good storage stability. With the increase in vinyl-POSS, the tensile strength of the chloroprene latex firstly increased and then decreased, the tensile property (peel strength of 20.2 kgf) was maintained well at a high temperature (100 °C), and the thermal stability of the chloroprene latex was improved. When the addition amount was 4%, the comprehensive mechanical properties were their best. This study provides a new idea for the construction of a new and efficient waterborne chloroprene latex system and provides more fields for the practical application of waterborne chloroprene latex. This newly developed vinyl-POSS modified chloroprene latex has great application potential for use in home furniture, bags, and seat cushions.

2.
Front Plant Sci ; 15: 1344143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410736

RESUMO

Protein, oil content, linoleic acid, and lignan are several key indicators for evaluating the quality of flaxseed. In order to optimize the testing methods for flaxseed's nutritional quality and enhance the efficiency of screening high-quality flax germplasm resources, we selected 30 flaxseed species widely cultivated in Northwest China as the subjects of our study. Firstly, we gathered hyperspectral information regarding the seeds, along with data on protein, oil content, linoleic acid, and lignan, and utilized the SPXY algorithm to classify the sample set. Subsequently, the spectral data underwent seven distinct preprocessing methods, revealing that the PLSR model exhibited superior performance after being processed with the SG smoothing method. Feature wavelength extraction was carried out using the Successive Projections Algorithm (SPA) and the Competitive Adaptive Reweighted Sampling (CARS). Finally, four quantitative analysis models, namely Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Multiple Linear Regression (MLR), and Principal Component Regression (PCR), were individually established. Experimental results demonstrated that among all the models for predicting protein content, the SG-CARS-MLR model predicted the best, with and of 0.9563 and 0.9336, with the corresponding Root Mean Square Error Correction (RMSEC) and Root Mean Square Error Prediction (RMSEP) of 0.4892 and 0.5616, respectively. In the optimal prediction models for oil content, linoleic acid and lignan, the Rp2 was 0.8565, 0.8028, 0.9343, and the RMSEP was 0.8682, 0.5404, 0.5384, respectively. The study results show that hyperspectral imaging technology has excellent potential for application in the detection of quality characteristics of flaxseed and provides a new option for the future non-destructive testing of the nutritional quality of flaxseed.

3.
ACS Appl Mater Interfaces ; 16(8): 11084-11093, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362761

RESUMO

In this work, we investigate the freezing behavior and ice adhesion properties of sessile drops on micropillared superhydrophobic surfaces (SHSs) with various sizes, which are of practical importance for anti/deicing. First of all, it is demonstrated that the recalescence is related only to the supercooling degree of drops but not to the geometrical parameters of micropillars. The freezing time of sessile drops first increases and then decreases with the area fraction of the SHSs, which demonstrates the nonmonotonic dependence of the icing time on the area fraction. Moreover, the influence of the geometrical parameters of the micropillars on the ice adhesion is discussed. With the decrease of the substrate temperature, the wetting state of the adhesive ice can be transformed from the Cassie ice to the Wenzel ice. For the Cassie ice, the adhesive force is proportional to the area fraction of the SHSs. Interestingly, experimental results show that there exist two interfacial debonding modes of the Wenzel ice: translational debonding and rotational debonding. Furthermore, it is found that the rotational debonding mode contributes to a much lower adhesive force between the ice and the micropillared surface compared to that of the translational debonding mode. By analyzing the critical interfacial energy release rate of the two modes, we deduce the threshold between the two modes, which is quantified as the geometrical parameters of the micropillars. In addition, quantitative relations between the geometrical parameters and the adhesion strengths of the two modes are also obtained. We envision that this work would shed new light on the design optimization of anti/deicing materials.

4.
Vet Res ; 54(1): 109, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993891

RESUMO

Avian pathogenic Escherichia coli (APEC) is a notable subpathotype of the nonhuman extraintestinal pathogenic E. coli (ExPEC). Recognized as an extraintestinal foodborne pathogen, the zoonotic potential of APEC/ExPEC allows for cross-host transmission via APEC-contaminated poultry meat and eggs. ProQ, an RNA binding protein, is evolutionarily conserved in E. coli. However, its regulatory roles in the biofilm formation and virulence of APEC/ExPEC have not been explored. In this study, proQ deletion in the APEC strain FY26 significantly compromised its biofilm-forming ability. Furthermore, animal tests and cellular infection experiments showed that ProQ depletion significantly attenuated APEC virulence, thereby diminishing its capacity for bloodstream infection and effective adherence to and persistence within host cells. Transcriptome analysis revealed a decrease in the transcription level of the small RNA (sRNA) RyfA in the mutant FY26ΔproQ, suggesting a direct interaction between the sRNA RyfA and ProQ. This interaction might indicate that sRNA RyfA is a novel ProQ-associated sRNA. Moreover, the direct binding of ProQ to the sRNA RyfA was crucial for APEC biofilm formation, pathogenicity, adhesion, and intracellular survival. In conclusion, our findings provide detailed insight into the interaction between ProQ and sRNA RyfA and deepen our understanding of the regulatory elements that dictate APEC virulence and biofilm development. Such insights are instrumental in developing strategies to counteract APEC colonization within hosts and impede APEC biofilm establishment on food surfaces.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças das Aves Domésticas , Pequeno RNA não Traduzido , Animais , Escherichia coli , Virulência , Infecções por Escherichia coli/veterinária , Galinhas/genética , Doenças das Aves Domésticas/patologia , Fatores de Virulência/genética , Biofilmes , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a RNA
5.
Microb Cell Fact ; 22(1): 177, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689682

RESUMO

BACKGROUND: Avian pathogenic Escherichia coli (APEC) is the major pathogen causing important avian diseases in poultry. As an important subtype of extraintestinal pathogenic E. coli, APEC has zoonotic potential and is considered a foodborne pathogen. APEC extracellular vesicles (EVs) may play vital roles in the interaction of the pathogen with its host cells. However, the precise roles played by APEC EVs are still not completely clear, especially in immune cells. RESULTS: In this study, we investigated the relationships between APEC EVs and immune cells. The production and characteristics of the EVs of APEC isolate CT265 were identified. Toll like receptor 4 (TLR4) triggered the cellular immune responses when it interacted with APEC EVs. APEC EVs induced a significant release of proinflammatory cytokines in THP-1 macrophages. APEC EVs induced the macrophage inflammatory response via the TLR4/MYD88/NF-κB signaling pathway, which participated in the activation of the APEC-EV-induced NLRP3 inflammasome. However, the loss of lipopolysaccharide (LPS) from APEC EVs reduced the activation of the NLRP3 inflammasome mediated by TLR4/MYD88/NF-κB signaling. Because APEC EVs activated the macrophage inflammatory response and cytokines release, we speculated that the interaction between APEC EVs and macrophages activated and promoted neutrophil migration during APEC extraintestinal infection. This study is the first to report that APEC EVs induce the formation of neutrophil extracellular traps (NETs) and chicken heterophil extracellular traps. Treatment with APEC EVs induced SAPK/JNK activation in neutrophils. The inhibition of TLR4 signaling suppressed APEC-EV-induced NET formation. However, although APEC EVs activated the immune response of macrophages and initiated NET formation, they also damaged macrophages, causing their apoptosis. The loss of LPS from APEC EVs did not prevent this process. CONCLUSION: APEC-derived EVs induced inflammatory responses in macrophages and NETs in neutrophils, and that TLR4 was involved in the APEC-EV-activated inflammatory response. These findings provided a basis for the further study of APEC pathogenesis.


Assuntos
Infecções por Escherichia coli , Armadilhas Extracelulares , Vesículas Extracelulares , Humanos , Escherichia coli , Receptor 4 Toll-Like , NF-kappa B , Inflamassomos , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Infecções por Escherichia coli/veterinária
6.
Small ; 19(41): e2302339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312674

RESUMO

Liquid fluidity is a most key prerequisite for a broad range of technologies, from energy, fluid machineries, microfluidic devices, water, and oil transportation to bio-deliveries. While from thermodynamics, the liquid fluidity gradually diminishes as temperature decreases until completely solidified below icing points. Here, self-driven droplet motions are discovered and demonstrated occurring in icing environments and accelerating with both moving distances and droplet volumes. The self-driven motions, including self-depinning and continuous wriggling, require no surface pre-preparation or energy input but are triggered by the overpressure spontaneously established during icing and then continuously accelerated by capillary pulling of frosts. Such self-driven motions are generic to a broad class of liquid types, volumes, and numbers on various micro-nanostructured surfaces and can be facilely manipulated by introducing pressure gradients spontaneously or externally. The discovery and control of self-driven motions below icing points can greatly broaden liquid-related applications in icing environments.

7.
ACS Appl Mater Interfaces ; 15(4): 6013-6024, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656131

RESUMO

Overcoming ice accretion on external aircraft wing surfaces plays a crucial role in aviation, and developing environmentally friendly passive anti-icing surfaces is considered to be a promising strategy. Superhydrophobic surfaces (SHSs) have attracted increasing attention due to their potential advantages of keeping the airframe dry without causing additional aerodynamic losses. However, the passive anti-icing performances of SHSs reported to date varied a lot under different icing test conditions. Therefore, a systematic investigation is necessary to elucidate the icing conditions where SHSs can remain effective and pave the way for SHSs toward practical anti-icing applications. Herein, we designed and fabricated a typical type of SHS featuring dual-scale hierarchical structures with arrayed micromountains (with both spacings and heights of tens of micrometers) covered by single-scale sandy-corrugation-like periodic structures (with both spacings and heights of only several micrometers) (termed SS1). Its anti-icing performances under three representative icing conditions, including static water freezing, dynamic supercooled-droplet impinging, and icing wind tunnel conditions, were comparatively investigated. The SS1 SHS maintained a lower static ice-adhesion strength (<60 kPa even after 50 deicing cycles at temperatures as low as -25 °C), which was attributed to a cumulative cracking effect facilitating the ice detachment. Within the laboratory dynamic icing tests, the SS1 SHSs with micromountain heights of 20-30 µm performed optimally in the antiadhesion of supercooled droplets (at an impinging velocity of 3.4 m/s and temperatures of -5 to -25 °C). In spite of the significant anti-icing performances of the SS1 SHSs in both static and dynamic laboratory tests, they could hardly sustain reliable passive anti-icing performances in harsher icing wind tunnel tests with supercooled droplets impinging their surfaces at velocities of up to 50 m/s at a temperature of -5 °C for 10 min. This study can inspire the development of improved SHSs for achieving satisfactory anti-icing performances in real-aviation conditions.

8.
ACS Appl Mater Interfaces ; 15(4): 6025-6034, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688663

RESUMO

Reducing unfavorable ice accretion on surfaces exposed in cold environment requires effective passive anti-icing/deicing techniques. Icephobic surfaces are widely applied on various infrastructures due to their low ice adhesion strength and flexibility, whereas their poor mechanical durability, common liquid infusion, weak resistance to contamination, and low bonding strength to substrates are the major remaining challenges. According to the fracture mechanics of ice layer, initiating cracks at the ice-solid interfaces via the proper design of internal structures of icephobic materials is a promising way to icephobicity. Herein, a crack initiating icephobic surface with porous PDMS sponges sandwiched between a protective, dense PDMS layer and a textured metal microstructure was proposed and fabricated. The combination of high- and low- stiffness PDMS layers anchored by the structured metal surface give the sandwich-like structure excellent icephobicity with both high durability and low ice adhesion (5.3 kPa in the icing-deicing cycles). The porosity and the elastic modulus of the PDMS sponges and the periodicity of the metal surface structures can both be tailored to realize enhanced icephobicity. The sandwich-like icephobic surface remained insignificantly changed under solid particle impacting and the durability characterized via linear abrasion tests was elevated compared with PDMS coating on flat metal surfaces. Additionally, the trilayer icephobic surface possesses durability, low ice adhesion strength, and improved resistance to contamination and is applicable on various surfaces.

9.
Nucleic Acids Res ; 51(D1): D950-D956, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318240

RESUMO

Genomic Knowledgebase (GenomicKB) is a graph database for researchers to explore and investigate human genome, epigenome, transcriptome, and 4D nucleome with simple and efficient queries. The database uses a knowledge graph to consolidate genomic datasets and annotations from over 30 consortia and portals, including 347 million genomic entities, 1.36 billion relations, and 3.9 billion entity and relation properties. GenomicKB is equipped with a web-based query system (https://gkb.dcmb.med.umich.edu/) which allows users to query the knowledge graph with customized graph patterns and specific constraints on entities and relations. Compared with traditional tabular-structured data stored in separate data portals, GenomicKB emphasizes the relations among genomic entities, intuitively connects isolated data matrices, and supports efficient queries for scientific discoveries. GenomicKB transforms complicated analysis among multiple genomic entities and relations into coding-free queries, and facilitates data-driven genomic discoveries in the future.


Assuntos
Genoma Humano , Reconhecimento Automatizado de Padrão , Humanos , Genômica , Bases de Conhecimento
10.
J Environ Manage ; 326(Pt A): 116851, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442350

RESUMO

With the development of remote sensing technology, significant progress has been made in the evaluation of the eco-environment. The remote sensing ecological index (RSEI) is one of the most widely used indices for the comprehensive evaluation of eco-environmental quality. This index is entirely based on remote sensing data and can monitor eco-environmental aspects quickly for a large area. However, the use of RSEI has some limitations. For example, its application is generally not uniform, the obtained results are stochastic in nature, and its calculation process cannot consider all ecological elements (especially the water element). In spite of the widespread application of the RSEI, improvements to its limitations are scarce. In this paper, we propose a new index named the remote sensing ecological index considering full elements (RSEIFE). The proposed RSEIFE is compared with commonly used evaluation models such as RSEI and RSEILA (Remote Sensing Ecological Index with Local Adaptability) in several types of study areas to assess the stability and accuracy of our model. The results show that the calculation process of RSEIFE is more stable than those of RSEI and RSEILA, and the results of RSEIFE are consistent with the real eco-environment surface and reveal more details about its features. Meanwhile, compared with RSEI and RSEILA, the results of RSEIFE effectively reveal the ecological benefits of both water bodies themselves and their surrounding environments, which lead to more accurate and comprehensive basis for the implementation of environmental protection policies.


Assuntos
Política Ambiental , Tecnologia de Sensoriamento Remoto , Políticas , Água
11.
Polymers (Basel) ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201751

RESUMO

Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell and fluorinated acrylate (PA) as the core was prepared by core-shell emulsion polymerization with CWPU as the seed emulsion, together with dodecafluoroheptyl methacrylate (DFMA), diacetone acrylamide (DAAM), and methyl methacrylate (MMA). The effects of the core-shell ratio of PA/PU on the surface properties, mechanical properties, and heat resistance of FPUA emulsions and films were investigated. The results showed that when w(PA) = 30~50%, the stability of FPUA emulsion was the highest, and the particles showed a core-shell structure with bright and dark intersections under TEM. When w(PA) = 30%, the tensile strength reached 23.35 ± 0.08 MPa. When w(PA) = 50%, the fluorine content on the surface of the coating film was 14.75% and the contact angle was as high as 98.5°, which showed good hydrophobicity; the surface flatness of the film was observed under AFM. It is found that the tensile strength of the film increases and then decreases with the increase in the core-shell ratio and the heat resistance of the FPUA film is gradually increased. The FPUA film has excellent properties such as good impact resistance, high flexibility, high adhesion, and corrosion resistance.

12.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231956

RESUMO

The incorporation of a naphthyl curing agent (NCA) can enhance the thermal stability of pressure-sensitive adhesives (PSAs). In this study, a PSA matrix was synthesized using a solution polymerization process and consisted of butyl acrylate, acrylic acid, and an ethyl acrylate within an acrylic copolymer. Benzoyl peroxide was used as an initiator during the synthesis. To facilitate the UV curing of the solvent-borne PSAs, glycidyl methacrylate was added to introduce unsaturated carbon double bonds. The resulting UV-curable acrylic PSA tapes exhibited longer holding times at high temperatures (150 °C) compared to uncross-linked PSA tapes, without leaving any residues on the substrate surface. The thermal stability of the PSA was further enhanced by adding more NCA and increasing the UV dosage. This may be attributed to the formation of cross-linking networks within the polymer matrix at higher doses. The researchers successfully balanced the adhesion performance and thermal stability by modifying the amount of NCA and UV radiation, despite the peel strength declining and the holding duration shortening. This research also investigated the effects of cross-linking density on gel content, molecular weight, glass transition temperature, and other properties of the PSAs.

13.
ACS Appl Mater Interfaces ; 14(43): 49352-49361, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260496

RESUMO

Superhydrophobic surfaces have been widely studied due to their potential applications in aerospace fields. However, superhydrophobic surfaces with excellent water-repellent, anti-icing, and icephobic performances at low temperatures have rarely been reported. Herein, superhydrophobic surfaces with heating capability were prepared by etching square micropillar arrays on the surface of multiwalled carbon nanotube (MWCNT)/poly(dimethylsiloxane) (PDMS) films. The fabricated superhydrophobic surface has triple icephobicity, which can be activated even at low temperatures. The triple icephobicity is triggered by an applied voltage to achieve excellent water-repellent and icephobic capabilities, even at -40 °C. Additionally, theoretical calculations reveal that a droplet on a superhydrophobic surface loses heat at a rate of 8.91 × 10-5 J/s, which is 2 orders of magnitude slower than a flat surface (2.15 × 10-3 J/s). Also, at -40 °C, the mechanical interlocking force formed between the superhydrophobic surface and ice can be released by the heating property of the superhydrophobic surface. This low-energy, multifunctional superhydrophobic surface opens up new possibilities for bionic smart multifunctional materials in icephobic applications.

14.
PLoS Pathog ; 18(10): e1010908, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260637

RESUMO

Extra-intestinal Pathogenic Escherichia coli (ExPEC) is defined as an extra-intestinal foodborne pathogen, and several dominant sequence types (STs) ExPEC isolates are highly virulent, with zoonotic potential. Bacteria extracellular vesicles (EVs) carry specific subsets of molecular cargo, which affect various biological processes in bacteria and host. The mechanisms of EVs formation in ExPEC remains to be elucidated. Here, the purified EVs of ExPEC strains of different STs were isolated with ultracentrifugation processes. A comparative analysis of the strain proteomes showed that cytoplasmic proteins accounted for a relatively high proportion of the proteins among ExPEC EVs. The proportion of cytoplasm-carrying vesicles in ExPEC EVs was calculated with a simple green fluorescent protein (GFP) expression method. The RecA/LexA-dependent SOS response is a critical mediator of generation of cytoplasm-carrying EVs. The SOS response activates the expression of prophage-associated endolysins, Epel1, Epel2.1, and Epel2.2, which triggered cell lysis, increasing the production of ExPEC cytoplasm-carrying EVs. The repressor LexA controlled directly the expression of these endolysins by binding to the SOS boxes in the endolysin promoter regions. Reducing bacterial viability stimulated the production of ExPEC EVs, especially cytoplasm-carrying EVs. The imbalance in cell division caused by exposure to H2O2, the deletion of ftsK genes, or t6A synthesis defects activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, and thus increasing the proportion of cytoplasm-carrying EVs in the total ExPEC EVs. Antibiotics, which decreased bacterial viability, also increase the production of ExPEC cytoplasm-carrying EVs through the SOS response. Changes in the proportion of cytoplasm-carrying EVs affected the total DNA content of ExPEC EVs. When macrophages are exposed to a higher proportion of cytoplasm-carrying vesicles, ExPEC EVs were more cytotoxic to macrophages, accompanied with more-severe mitochondrial disruption and a higher level of induced intrinsic apoptosis. In summary, we offered comprehensive insight into the proteome analysis of ExPEC EVs. This study demonstrated the novel formation mechanisms of E. coli cytoplasm-carrying EVs.


Assuntos
Proteínas de Escherichia coli , Vesículas Extracelulares , Escherichia coli Extraintestinal Patogênica , Viabilidade Microbiana , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vesículas Extracelulares/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo
15.
Org Biomol Chem ; 20(23): 4714-4718, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35622375

RESUMO

The highly regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride (ESF) has been developed. In the presence of different bases, N2-alkylated and C4-alkylated isoxazol-5-ones with a sulfonyl fluoride group were obtained separately with good to excellent yields. Further transformations with amines and phenol gave sulfonamides and sulfonates. The intriguing combination of isoxazol-5-ones and the sulfonyl fluoride group produces valuable products for drug discovery.


Assuntos
Androstenóis , Fluoretos , Fenóis , Sulfonamidas
16.
J Environ Manage ; 299: 113655, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34488109

RESUMO

Ecological environmental assessment is an indispensable part of the eco-environment protection system. As researchers have increasingly focused on ecological environment protection, the ecological environment evaluation system has been gradually improved. The enhancement of the ecological environment evaluation system provides more scientific and effective data support for ecological environment monitoring and governance. This article examines the Wuhan Urban Development Zone as an example, selects Landsat 8 (Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS)) images of the study area from 2013 to 2019 at two-year intervals, and applies a new type of ecological environment evaluation index named the remote sensing ecological index with local adaptability (RSEILA) to assess the eco-environment. The RSEILA represents an improvement of the remote sensing ecological index (RSEI) proposed in 2013. The RSEILA enhancement is mainly reflected in the correlation and spatial distribution characteristics between geographical elements. The results reveal that 1) the overall urban ecological environment in the Wuhan Urban Development Zone demonstrates a downward trend from 2013 to 2019, and the rate of decline during the period varies. 2) RSEILA decline is mainly found in the far suburbs, and ecological environment degradation mainly occurs due to the change in land-use type caused by the suburbanization process of urban expansion. 3) Because of the implementation of urban greening projects, the phenomenon of ecological environment optimization (green recovery) is observed in the central urban area of Wuhan. 4) Land use exhibits a notable correlation with the ecological environment, and different land-use types exhibit distinct degrees of ecological environment deterioration. The order of deterioration is: bare soil/sand > building > cropland > forests.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , China , Cidades , Conservação dos Recursos Naturais , Ecossistema , Florestas
17.
Org Lett ; 23(11): 4228-4232, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34029100

RESUMO

Enantioselective conjugate addition of azlactones to ethylene sulfonyl fluoride has been achieved via the cooperative catalysis with (DHQD)2PHAL and a hydrogen-bond donor (HBD). This approach furnishes a facile access to a range of structurally diverse azlactone sulfonyl fluoride derivatives with good to excellent yields and enantioselectivities. The combination of azlactone and sulfonyl fluoride group produces valuable unnatural α-quaternary amino acid derivatives for the drug discovery.

18.
Org Biomol Chem ; 19(22): 4877-4881, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34002754

RESUMO

A diastereoselective (3 + 2) cycloaddition of N-sulfonyl ketimines with vinylethylene carbonates (VECs) in the presence of Pd2dba3·CHCl3 and PPh3 has been developed. The reaction of various substituted VECs and diverse cyclic N-sulfonyl ketimines proceeded smoothly under mild conditions, giving highly functionalized oxazolidine frameworks in good to excellent yields with moderate to good diastereoselectivities. With the use of spiroketal-based diphosphine SKP as a chiral ligand, an asymmetric version of the current (3 + 2) cycloaddition was achieved, and chiral products were obtained in >99% ee in most cases.

19.
J Org Chem ; 86(3): 3041-3048, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503367

RESUMO

An enantioselective Michael addition between N-2,2,2-trifluoroethylisatin ketimines and ethylene sulfonyl fluoride has been disclosed. This method provides a facile strategy to access a range of structurally diverse isatin-derived α-(trifluoromethyl)imine derivatives with excellent yields and enantioselectivities. The intriguing combination of α-(trifluoromethyl)amine and sulfonyl fluoride groups leads to the valuable candidates for the drug discovery.


Assuntos
Etilenos , Iminas , Catálise , Estrutura Molecular , Nitrilas , Estereoisomerismo , Ácidos Sulfínicos
20.
Org Lett ; 22(18): 7158-7163, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32883084

RESUMO

A palladium/XantPhos-catalyzed [5 + 2] annulation of VECs with electron-deficient alkenes having an isolated carbon-carbon double bond has been developed to afford spirobarbiturate-tetrahydrooxepines. This study provides an expedient assembly of biologically interesting spirobarbiturate-tetrahydrooxepines. The easy scalability and versatile transformability of the reaction products were also exhibited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA