Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299246

RESUMO

Solar-driven water purification has been deemed a promising technology to address the issue of clean water scarcity. However, traditional solar distillers often suffer from low evaporation rates under natural sunlight irradiation, while the high costs of the fabrication of photothermal materials further hinders their practical applications. Here, through the harnessing of the complexation process of oppositely charged polyelectrolyte solutions, a polyion complex hydrogel/coal powder composite (HCC)-based highly efficient solar distiller is reported. In particular, the influence of the charge ratio of polyanion-to-polycation on the solar vapor generation performance of HCC has been systematically investigated. Together with a scanning electron microscope (SEM) and the Raman spectrum method, it is found that a deviation from the charge balance point not only alters the microporous structure of HCC and weakens its water transporting capabilities, but also leads to a decreased content of activated water molecules and enlarges the energy barrier of water evaporation. As a result, HCC prepared at the charge balance point exhibits the highest evaporation rate of 3.12 kg m-2 h-1 under one sun irradiation, with a solar-vapor conversion efficiency as high as 88.83%. HCC also exhibits remarkable solar vapor generation (SVG) performance for the purification of various water bodies. In simulated seawater (3.5 wt% NaCl solutions), the evaporation rate can be as high as 3.22 kg m-2 h-1. In acid and alkaline solutions, HCCs are capable of maintaining high evaporation rates of 2.98 and 2.85 kg m-2 h-1, respectively. It is anticipated that this study may provide insights for the design of low-cost next-generation solar evaporators, and broaden the practical applications of SVG for seawater desalination and industrial wastewater purification.

2.
Gels ; 9(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826315

RESUMO

Biological soft tissues are intrinsically viscoelastic materials which play a significant role in affecting the activity of cells. As potential artificial alternatives, double-network (DN) gels, however, are pure elastic and mechanically time independent. The viscoelasticization of DN gels is an urgent challenge in enabling DN gels to be used for advanced development of biomaterial applications. Herein, we demonstrate a simple approach to regulate the viscoelasticity of tough double-network (DN) hydrogels by forming sulfonate-metal coordination. Owing to the dynamic nature of the coordination bonds, the resultant hydrogels possess highly viscoelastic, mechanical time-dependent, and self-recovery properties. Rheological measurements are performed to investigate the linear dynamic mechanical behavior at small strains. The tensile tests and cyclic tensile tests are also systematically performed to evaluate the rate-dependent large deformation mechanical behaviors and energy dissipation behaviors of various ion-loaded DN hydrogels. It has been revealed based on the systematic analysis that robust strong sulfonate-Zr4+ coordination interactions not only serve as dynamic crosslinks imparting viscoelastic rate-dependent mechanical performances, but also strongly affect the relative strength of the first PAMPS network, thereby increasing the yielding stress σy and the fracture stress at break σb and reducing the stretch ratio at break λb. It is envisioned that the viscoelasticization of DN gels enables versatile applications in the biomedical and engineering fields.

3.
Gels ; 9(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36826328

RESUMO

The Kirigami approach is an effective way to realize controllable deformation of intelligent materials via introducing cuts into bulk materials. For materials ranging from ordinary stiff materials such as glass, ceramics, and metals to soft materials, including ordinary hydrogels and elastomers, all of them are all sensitive to the presence of cuts, which usually act as defects to deteriorate mechanical properties. Herein, we study the influence of the cuts on the mechanical properties by introducing "dispersed macro-scale cuts" into a model tough double network (DN) hydrogel (named D-cut gel), which consists of a rigid and brittle first network and a ductile stretchable second network. For comparison, DN gels with "continuous cuts" having the same number of interconnected cuts (named C-cut gel) were chosen. The fracture tests of D-cut gel and C-cut gel with different cut patterns were performed. The fracture observation revealed that crack blunting occurred at each cut tip, and a large wrinkle-like zone was formed where the wrinkles were parallel to the propagation direction of the cut. By utilizing homemade circular polarizing optical systems, we found that introducing dispersed cuts increases the rupture force by homogenizing the stress around the crack tip surrounding every cut, which reduces stress concentration in one certain cut. We believe this work reveals the fracture mechanism of tough soft materials with a kirigami cut structure, which should guide the design of advanced soft and tough materials along this line.

4.
Front Chem ; 10: 855352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308786

RESUMO

Waterborne polyurethane has been proven to be an ideal additive for the preparation of hydrogels with excellent mechanical properties. This work reports that a satisfactory adhesion of acrylamide hydrogels can be obtained by introducing a large amount of waterborne polyurethane into system. A series of polyurethane hydrogels was prepared by using one-pot method with acrylamide monomer and 2-hydroxymethyl methacrylate end-modified waterborne polyurethane emulsion. The hydrogels exhibit good strength (greater than 30 KPa), wide range of adjustable strain (200%-800%), and excellent compression fatigue resistance. The performance improvement is attributed to the fact that the polyurethane emulsion containing double bonds provides chemical crosslinking and forms polyurethane microregions due to hydrophilic and hydrophobic interactions. The hydrogel shows extensive and repeatable adhesion on diverse substrates. This simple preparation method through polyurethane crosslinked hydrogels is expected to become a low-cost and efficient preparation strategy for hydrogel adhesives.

5.
Polymers (Basel) ; 14(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335444

RESUMO

Polyurethane (PU) grouting material has been widely utilized to control water inrush in mining fields. However, the application has been limited by its high cost and poor flame retardancy. Here, we use the fly ash (FA), a waste from coal of the iron-making industry and power plants, as a partial replacement of conventional filler in PU grouting materials to reduce the production cost and the environmental pollution of FA. The surface-modified FA-filled PU (PU/FA) composites were prepared by room-temperature curing. The effects of FA contents (φ) on the structure, foaming behavior, thermal stability, mechanical properties, hydrophobic properties, and flammability of PU grouting materials were examined. Results showed that the higher the φ, the more porous the PU/FA composites are, resulting in a lower density and lower mechanical properties. The relationship between the compression modulus E and the density ρ of the PU/FA composites was E ∝ ρ1.3. In addition, the surface-modified FA improved the compatibility between the hard and soft segment of PU in the PU/FA composite, giving the composites enhanced thermal stability, high hydrophobicity, and flammability resistance.

6.
Biomater Adv ; 133: 112654, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35067432

RESUMO

The development of biomimetic materials with anisotropic topological structure and wide range of adjustable mechanical properties is central to tissue engineering fields. In this work, on the basis of a stiff/stretchable dually crosslinked hydrogel, we paid more attention to the synergistic contribution of the confined drying and re-swelling (CDR) effect and Hofmeister effect to its micro structures, polymer aggregation states and mechanical strength. Specifically, by changing the pre-strains of the CDR procedure and the soaking time during the salting-out procedure, the arrangement structure orientation, chain-entanglement density, and supramolecular interaction strength within the polymer can be adjusted by changing the processing sequence of the two procedures, so that to obtain anisotropic biomimetic hydrogels with adjustable mechanical properties in a wide range. Thus, this engineered anisotropic polymer can mimic the natural tissues' mechanical properties in regeneration. Moreover and importantly, these anisotropic hydrogels exhibit prominent self-recovery properties. In summary, with the integration of molecular and structural engineering approaches, this study presents a universal strategy for developing anisotropic hydrogels, which could be widely used as biomimetic substitutes with anisotropic features in tissue regeneration.


Assuntos
Biomimética , Hidrogéis , Anisotropia , Hidrogéis/química , Polímeros , Engenharia Tecidual/métodos
7.
Mol Biotechnol ; 64(2): 144-155, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34550549

RESUMO

Long non-coding RNA LINC01106 is an lncRNA aberrantly expressed in gastric cancer (GC). However, the accurate function remains unclear. The objective of this investigation is to explore detailed regulatory mechanism of lncRNA LINC01106 in GC. The expression of lncRNA LINC01106, MYCN, and miR-34a-5p was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined using MTT assay. Migratory and invasive abilities of GC cells were evaluated by transwell assay. The targeting relation among lncRNA LINC01106, MYCN, and miR-34a-5p was tested by dual-luciferase reporter (DLR) assay. Relative protein expression of MYCN was assessed via western blot. Besides, a xenograft mouse model was established to assess the role of LINC01106 in GC in vivo. LncRNA LINC01106 and MYCN expression were boosted and miR-34a-5p expression was reduced in GC cells and tissues compared to their controls. Functionally, decreased lncRNA LINC01106 or increased miR-34a-5p restrained GC cells in viability, invasion, and migration in vitro. LINC01106 down-regulation suppressed tumor growth of mice in vivo. In terms of mechanism, lncRNA LINC01106 directly targeted miR-34a-5p and was inversely correlated with miR-34a-5p. MYCN was targeted by miR-34a-5p and was inversely correlated with miR-34a-5p. There was a positive correlation between LINC01106 and MYCN. LINC01106 knockdown led to the suppression of cell invasion, migration, and viability, whereas these effects caused by LINC01106 knockdown were reversed by miR-34a-5p down-regulation or MYCN up-regulation in GC cells. Silencing of lncRNA LINC01106 attenuated cell viability, invasion, and migration by sponging miR-34a-5p to target MYCN in GC.


Assuntos
MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883704

RESUMO

In recent years, buried bellows have often had safety accidents such as pipeline bursts and ground subsidence due to the lack of adequate mechanical properties and other quality problems. In order to improve the mechanical properties of bellows, fly ash (FA) was used as a reinforced filler in high density polyethylene (HDPE) to develop composites. The FA was surface treated with a silane coupling agent and HDPE-g-maleic anhydride was used as compatibilizer. Dumbbell-shaped samples were prepared via extrusion blending and injection molding. The cross-section morphology, thermal stability and mechanical properties of the composites were studied. It was observed that when 10% modified FA and 5% compatibilizer were added to HDPE, the tensile yield strength and tensile breaking strength of the composites were nearly 30.2% and 40.4% higher than those of pure HDPE, respectively, and the Young's modulus could reach 1451.07 MPa. In addition, the ring stiffness of the bellows was analyzed using finite element analysis. Compared with a same-diameter bellows fabricated from common commercially available materials, the ring stiffness increased by nearly 23%. The preparation method of FA/HDPE is simple, efficient, and low-cost. It is of great significance for the popularization of high-performance bellows and the high value-added utilization of FA.

9.
Biosci Biotechnol Biochem ; 85(3): 634-642, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33590867

RESUMO

Soaking is an essential step in the processing of various rice products. In this study, the influences of vacuum soaking on hydration, steaming, and physiochemical properties of rice were investigated. Results showed that vacuum soaking accelerated water absorption as well as affected the mobility and density of water protons inside rice during soaking. Vacuum soaking could considerably shorten the optimal steaming time from 58 to 32 min and reduce the adhesiveness of steamed rice. Microstructure analysis of rice revealed that porous structure was formed on rice surface and the arrangement of starch granules became loosened after vacuum soaking. Moreover, vacuum soaking slightly reduced the relative crystallinity of rice starches without altering the crystalline type. The gelatinization temperature as well as the peak and trough viscosity was also decreased after vacuum soaking. Our study suggested that vacuum soaking was conducive to improve the soaking and steaming properties of rice.


Assuntos
Culinária , Oryza/química , Vapor , Água , Vácuo
10.
J Biosci Bioeng ; 130(2): 159-165, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32418725

RESUMO

Soaking is an important process in Chinese rice wine brewing. In this study, the influence of vacuum soaking on Chinese rice wine production was investigated. Rice subjected to a 1-h vacuum soaking process or a traditional 2-days soaking process was steamed and fermented. Our results showed that vacuum soaking led to similar absorbed water but less leached solids compared with traditional soaking and showed limited influence on the physiochemical characteristics of steamed rice. Monitoring of the fermentation process suggested that the content of amino acid nitrogen in the vacuum-soaked group was significantly higher than that of the traditional-soaked group, while the other indexes were similar. The detection of flavor substances in the rice wine indicated that the contents of organic acids and free amino acids were higher in the vacuum-soaked group, and the main kinds of volatile flavor compounds from the two groups were similar. Additionally, sensory evaluation reflected that the rice wine brewed with rice subjected to either of the two different soaking treatments had similar sensory performances. Our research indicated that vacuum soaking could effectively shorten the soaking time of rice in Chinese rice wine production, thus shortening the brewing cycle without sacrificing the quality of the rice wine.


Assuntos
Manipulação de Alimentos/métodos , Microbiologia Industrial/métodos , Oryza/química , Vapor , Vácuo , Vinho/normas , Ácidos/análise , Fermentação , Aromatizantes/análise , Nitrogênio/análise , Oryza/metabolismo , Paladar , Vinho/microbiologia
11.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963669

RESUMO

The truncated signed distance field (TSDF) has been applied as a fast, accurate, and flexible geometric fusion method in 3D reconstruction of industrial products based on a hand-held laser line scanner. However, this method has some problems for the surface reconstruction of thin products. The surface mesh will collapse to the interior of the model, resulting in some topological errors, such as overlap, intersections, or gaps. Meanwhile, the existing TSDF method ensures real-time performance through significant graphics processing unit (GPU) memory usage, which limits the scale of reconstruction scene. In this work, we propose three improvements to the existing TSDF methods, including: (i) a thin surface attribution judgment method in real-time processing that solves the problem of interference between the opposite sides of the thin surface; we distinguish measurements originating from different parts of a thin surface by the angle between the surface normal and the observation line of sight; (ii) a post-processing method to automatically detect and repair the topological errors in some areas where misjudgment of thin-surface attribution may occur; (iii) a framework that integrates the central processing unit (CPU) and GPU resources to implement our 3D reconstruction approach, which ensures real-time performance and reduces GPU memory usage. The proposed results show that this method can provide more accurate 3D reconstruction of a thin surface, which is similar to the state-of-the-art laser line scanners with 0.02 mm accuracy. In terms of performance, the algorithm can guarantee a frame rate of more than 60 frames per second (FPS) with the GPU memory footprint under 500 MB. In total, the proposed method can achieve a real-time and high-precision 3D reconstruction of a thin surface.

12.
Onco Targets Ther ; 12: 10129-10138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819507

RESUMO

PURPOSE: This study aimed to investigate the anti-tumor effect of propofol on gastric cancer (GC) and its underlying mechanisms. PATIENTS AND METHODS: SGC-7901 and MKN45 cells were transfected and divided into the following groups: Control group, Propofol group, Propofol+miR-140-5p inhibitor group and miR-140-5p inhibitor group. Moreover, cell proliferation, apoptosis, migration and invasion of SGC-7901 and MKN45 cells were evaluated by BrdU incorporation assay, Annexin V-FITC/PI double staining assay, wound healing assay and transwell assay, respectively. The mRNA expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 were detected by qRT-PCR. Cleaved caspase-3, Bcl-2, MMP-2 and MMP-9 expressions were detected by Western blot. RESULTS: Propofol inhibited cell proliferation, migration and invasion, but promoted cell apoptosis in SGC-7901 and MKN45 cells. Propofol also elevated the expression of miR-140-5p. Suppression of miR-140-5p could reverse the effects of propofol on the biological behavior of SGC-7901 and MKN45 cells. Meanwhile, propofol treatment increased the expression of cleaved caspase-3 but decreased Bcl-2, MMP-2 and MMP-9 in SGC-7901 and MKN45 cells. The expression of cleaved caspase-3 was downregulated while Bcl-2, MMP-2 and MMP-9 were upregulated by miR-140-5p suppression. CONCLUSION: Propofol could inhibit cell proliferation, migration and invasion, as well as promote cell apoptosis by upregulating miR-140-5p in gastric cancer cells.

13.
Sensors (Basel) ; 19(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500123

RESUMO

As an important part of industrial 3D scanning, a relocation algorithm is used to restore the position and the pose of a 3D scanner or to perform closed-loop detection. The real time and the relocation correct ratio are prominent and difficult points in 3D scanning relocation research. By utilizing the depth map information captured by a binocular vision 3D scanner, we developed an efficient and real-time relocation algorithm to estimate the current position and pose of the sensor real-time and high-correct-rate relocation algorithm for small-range 3D texture less scanning. This algorithm mainly involves feature calculation, feature database construction and query, feature matching verification, and rigid transformation calculation; through the four parts, the initial position and pose of the sensors in the global coordinate system is obtained. In the experiments, the efficiency and the correct-rate of the proposed relocation algorithm were elaborately verified by offline and online experiments on four objects of different sizes, and a smooth and a rough surface. With more data frames and feature points, the relocation could be maintained real time within 200 ms, and a high correct rate of more than 90% could be realized. The experimental results showed that the proposed algorithm could achieve a real-time and high-correct-ratio relocation.

14.
ACS Appl Mater Interfaces ; 10(16): 13685-13692, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29608271

RESUMO

Conductive polymer hydrogels (CPHs) that combine the unique properties of hydrogels and electronic properties of conductors have shown their great potentials in wearable/implantable electronic devices, where materials with remarkable mechanical properties, high conductivity, and easy processability are demanding. Here, we have developed a new type of polyion complex/polyaniline (PIC/PAni) hybrid hydrogels that are tough, conductive, and can be facilely patterned. The incorporation of conductive phase (PAni) into PIC matrix through phytic acid resulted in hybrid gels with ∼65 wt % water; high conductivity while maintaining the key viscoelasticity of the tough matrix. The gel prepared from 1 M aniline (Ani) exhibited the breaking strain, fracture stress, tensile modulus, and electrical conductivity of 395%, 1.15 MPa, 5.31 MPa, and 0.7 S/m, respectively, superior to the most existing CPHs. The mechanical and electrical performance of PIC/PAni hybrid hydrogels exhibited pronounced rate-dependent and self-recovery behaviors. The hybrid gels can effectively detect subtle human motions as strain sensors. Alternating conductive/nonconductive patterns can be readily achieved by selective Ani polymerization using stencil masks. This facile patterning method based on PIC/PAni gels can be readily scaled up for fast fabrication of wavy gel circuits and multichannel sensor arrays, enabling real-time monitoring of the large-extent and large-area deformations with various sensitivities.

15.
ACS Appl Mater Interfaces ; 10(10): 9002-9009, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29457455

RESUMO

Designing tough biopolymer-based hydrogels as structural biomaterials has both scientific and practical significances. We report a facile approach to prepare polysaccharide-based hydrogel films with remarkable mechanical performances and antiadhesion property. The hydrogel films with a thickness of 40-60 µm were prepared by mixing aqueous solutions of κ-carrageenan (κ-CG) and protonated chitosan (CS), evaporating the solvent, and then swelling the casted film in water to achieve the equilibrium state. The obtained κ-CG/CS gel films with a water content of 48-88 wt % possessed excellent mechanical properties with a breaking stress of 2-6.7 MPa and a breaking strain of 80-120%, superior to the most existing biopolymer-based hydrogels. The extraordinary mechanical properties of gel films obtained over a wide range of mass ratio of κ-CG to CS should be rooted in the synergistic effect of ionic and hydrogen bonds between the κ-CG and CS molecules. In addition, the tough gel films showed good self-recovery ability, biocompatibility, and cell antiadhesion property, making them promising as an artificial dura mater and diaphragm materials in the surgery. The design principle by incorporating multiple noncovalent bonds to toughen the biopolymer-based hydrogels should be applicable to other systems toward structural biomaterials with versatile properties.

16.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28585313

RESUMO

Herein a facile method is reported to prepare polymer gels based on the formation of acylhydrazone bond under mild conditions. A pillar[5]arene derivative appended with ten hydrazide groups provides multiple sites for the reaction with the aldehyde groups of bis(p-formylphenyl) sebacate in the presence of a small amount of HCl as the catalyst in dimethyl sulfoxide (DMSO), producing transparent polymer organogels. The mechanical properties of gels can be easily tuned by the molar ratio of the reactant compounds. After solvent exchange from DMSO to water, translucent polymer hydrogels with dramatically enhanced strength and stiffness are obtained. The tensile breaking stress and Young's modulus of hydrogels are 20-60 and 1.2-2.7 MPa, respectively, 100 and 20 times those of the corresponding organogels. These robust hydrogels with ultrahigh stiffness should find applications such as in load-bearing artificial organs. This work should merit designing functional materials using other macrocycles.


Assuntos
Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Hidrazinas/química , Hidrogéis/química , Compostos de Amônio Quaternário/química , Bases de Schiff/química , Calixarenos , Catálise , Ácidos Decanoicos/síntese química , Ácidos Dicarboxílicos/síntese química , Dimetil Sulfóxido/química , Módulo de Elasticidade , Hidrogéis/síntese química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura
17.
ACS Appl Mater Interfaces ; 9(13): 11363-11367, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28317377

RESUMO

Titin is composed of repeated modular domains which unfold and dissipate energy upon loading. Here we employed such molecular-level paradigm to fabricate macroscopic ultratough hydrogel structures with titin-like domains, enabled by three-dimensional printing with multiple nozzles. Under stretch, the relatively thin and weak gel fibers in the printed structures break first and the hidden lengths postpone the failure of the main structures, mimicking the toughening principle in titin. These titin-like folded domains have been incorporated into a synthetic spider-web, which shows significantly enhanced extensibility and toughness. This work provides a new avenue of topological design for materials/structures with desired properties.

18.
ACS Appl Mater Interfaces ; 8(45): 31304-31310, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27779379

RESUMO

Polyion complex (PIC) hydrogels have been proposed as promising engineered soft materials due to their high toughness and good processability. In this work, we reported manufacturing of complex structures with tough PIC hydrogels based on three-dimensional (3D) printing technology. The strategy relies on the distinct strength of ionic bonding in PIC hydrogels at different stages of printing. In concentrated saline solution, PIC forms viscous solution, which can be directly extruded out of a nozzle into water, where dialyzing out of salt and counterions results in sol-gel transition to form tough physical PIC gel with intricate structures. The printability of PIC solutions was systematically investigated by adjusting the PIC material formula and printing parameters in which proper viscosity and gelation rate were found to be key factors for successful 3D printing. Uniaxial tensile tests were performed to printed single fibers and multilayer grids, both exhibiting distinct yet controllable strength and toughness. More complex 3D structures with negative Poisson's ratio, gradient grid, and material anisotropy were constructed as well, demonstrating the flexible printability of PIC hydrogels. The methodology and capability here provide a versatile platform to fabricate complex structures with tough PIC hydrogels, which should broaden the use of such materials in applications such as biomedical devices and artificial tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA