Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cancer Res Clin Oncol ; 150(6): 317, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914670

RESUMO

INTRODUCTION: CD24 is a highly glycosylated glycosylphosphatidylinositol anchored membrane protein that plays an important role in tumor progression. The aim of this study was to investigate the effect of abnormal expression of CD24 on the proliferation, migration and invasion of breast cancer (BC) cells, and the molecular mechanism of regulating CD24 expression in breast cancer. METHODOLOGY: The bioinformatics method was used to predict the expression level of CD24 in BC and its relationship with the occurrence and development of BC. IHC, RT-qPCR and WB were used to detect the expression of CD24 in BC tissues and cells. The proliferation of CD24 was evaluated by CCK-8 and colony formation assay, and the migration and invasion of CD24 were evaluated by wound healing and transwell. In addition, the effect of CD24 on the malignancy of BC in vivo was further evaluated by subcutaneous tumorigenesis assay. Molecular mechanisms were measured by luciferase reporter assays, biotin-labeled miRNA pull-down assay, RIP, and western blotting. RESULTS: The results show that CD24 is highly expressed in breast cancer tissues and cell lines, and knockdown of CD24 in vivo and in vitro can inhibit the proliferation, migration and invasion of BC cells. Mechanistically, the transcription factor ZNF460 promotes its expression by binding to the CD24 promoter, and the expression of ZNF460 is regulated by miR-125a-5p, which inhibits its expression by targeting the 3'UTR of ZNF460. In addition, LINC00525 acts as a ceRNA sponge to adsorb miR-125a-5p and regulate its expression. CONCLUSIONS: Overexpression of CD24 is involved in the development and poor prognosis of BC, which can be used as a potential target for the treatment of BC and provide a theoretical basis for the treatment of BC.


Assuntos
Neoplasias da Mama , Antígeno CD24 , Proliferação de Células , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Humanos , Antígeno CD24/genética , Antígeno CD24/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , MicroRNAs/genética , Animais , Camundongos , RNA Longo não Codificante/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Prognóstico
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1113-1125, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779947

RESUMO

Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metaloproteinases da Matriz/metabolismo , Quinases Associadas a rho/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Interferência de RNA , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinases Associadas a rho/genética , Proteína de Ligação a GTP rhoC/genética
3.
Front Pharmacol ; 6: 238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539118

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disease associated with lipotoxicity, lipid peroxidation, oxidative stress, and inflammation. Nuciferine, an active ingredient extracted from the natural lotus leaf, has been reported to be effective for the prevention and treatment of NAFLD. Per-Arnt-Sim kinase (PASK) is a nutrient responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, and gene expression. The aim of the present study was to investigate the protective effect of nuciferine against NAFLD and its inhibitory effect on PASK, exploring the possible underlying mechanism of nuciferine-mediated inhibition on NAFLD. Relevant biochemical parameters (lipid accumulation, extent of oxidative stress and release of inflammation cytokines) in oleic acid (OA)-induced HepG2 cells that mimicked steatosis in vitro were measured and compared with the control. It was found that nuciferine and silenced-PASK (siRNA PASK) both inhibited triglyceride (TG) accumulation and was effective in decreasing fatty acid (FFAs). The content of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) were increased respectively by nuciferine and siRNA PASK without increase in glutathione (GSH). Malondialdehyde (MDA) was decreased respectively by nuciferine and siRNA PASK. In addition, nuciferine decreased TNF-a, IL-6 and IL-8 as well as the siRNA PASK group. IL-10 was increased by nuciferine and siRNA PASK respectively. Further investigation revealed that nuciferine and siRNA PASK could respectively regulate the expression of target genes involved in lipogenesis and inflammation, suggesting that nuciferine may be a potential therapeutic treatment for NAFLD. Furthermore, the modulated effect of nuciferine on (OA)-induced HepG2 cells lipogenesis and inflammation, which was accompanied with PASK inhibition, was also consistent with siRNA PASK, implying that PASK might play a role in nuciferine-mediated regulation on NAFLD.

4.
BMC Cancer ; 15: 814, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26510899

RESUMO

BACKGROUND: Studies have described vasculogenic mimicry (VM) as an alternative circulatory system to blood vessels in multiple malignant tumor types, including hepatocellular carcinoma (HCC). In the current study, we aimed to seek novel and more efficient treatment strategies by targeting VM and explore the underlying mechanisms in HCC cells. METHODS: Cell counting kit-8 (CCK-8) assay and colony survival assay were performed to explore the inhibitory effect of incarvine C (IVC) on human cancer cell proliferation. Flow cytometry was performed to analyze the cell cycle distribution after DNA staining and cell apoptosis by the Annexin V-PE and 7-AAD assay. The effect of IVC on Rho-associated, coiled-coil-containing protein kinase (ROCK) was determined by western blotting and stress fiber formation assay. The inhibitory role of IVC on MHCC97H cell VM formation was determined by formation of tubular network structures on Matrigel in vitro, real time-qPCR, confocal microscopy and western blotting techniques. RESULTS: We explored an anti-metastatic HCC agent, IVC, derived from traditional Chinese medicinal herbs, and found that IVC dose-dependently inhibited the growth of MHCC97H cells. IVC induced MHCC97H cell cycle arrest at G1 transition, which was associated with cyclin-dependent kinase 2 (CDK-2)/cyclin-E1 degradation and p21/p53 up-regulation. In addition, IVC induced apoptotic death of MHCC97H cells. Furthermore, IVC strongly suppressed the phosphorylation of the ROCK substrate myosin phosphatase target subunit-1 (MYPT-1) and ROCK-mediated actin fiber formation. Finally, IVC inhibited cell-dominant tube formation in vitro, which was accompanied with the down-regulation of VM-key factors as detected by real time-qPCR and immunofluorescence. CONCLUSIONS: Taken together, the effective inhibitory effect of IVC on MHCC97H cell proliferation and neovascularization was associated with ROCK inhibition, suggesting that IVC may be a new potential drug candidate for the treatment of HCC.


Assuntos
Compostos Azabicíclicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Ácidos Cumáricos/farmacologia , Neoplasias Hepáticas/metabolismo , Neovascularização Patológica/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Inibidores de Proteínas Quinases/farmacologia
5.
PLoS One ; 9(9): e107661, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25238232

RESUMO

Ras homolog family member A (RhoA) and Rho-associated coiled coil-containing protein kinases 1 and 2 (ROCK1 and 2) are key regulators of focal adhesion, actomyosin contraction and cell motility. RhoA/ROCK signaling has emerged as an attractive target for the development of new cancer therapeutics. Whether RhoA/ROCK is involved in regulating the formation of tumor cell vasculogenic mimicry (VM) is largely unknown. To confirm this hypothesis, we performed in vitro experiments using hepatocellular carcinoma (HCC) cell lines. Firstly, we demonstrated that HCC cells with higher active RhoA/ROCK expression were prone to form VM channels, as compared with RhoA/ROCK low-expressing cells. Furthermore, Y27632 (a specific inhibitor of ROCK) rather than exoenzyme C3 (a specific inhibitor of RhoA) effectively inhibited the formation of tubular network structures in a dose-dependent manner. To elucidate the possible mechanism of ROCK on VM formation, real-time qPCR, western blot and immunofluorescence were used to detect changes of the key VM-related factors, including VE-cadherin, erythropoietin-producing hepatocellular carcinoma-A2 (EphA2), phosphoinositide 3-kinase (PI3K), matrix metalloproteinase (MMP)14, MMP2, MMP9 and laminin 5γ2-chain (LAMC2), and epithelial-mesenchymal-transition (EMT) markers: E-cadherin and Vimentin. The results showed that all the expression profiles were attenuated by blockage of ROCK. In addition, in vitro cell migration and invasion assays showed that Y27632 inhibited the migration and invasion capacity of HCC cell lines in a dose-dependent manner markedly. These data indicate that ROCK is an important mediator in the formation of tumor cell VM, and suggest that ROCK inhibition may prove useful in the treatment of VM in HCC.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Neoplasias Hepáticas/irrigação sanguínea , Neovascularização Patológica/metabolismo , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica , Neovascularização Patológica/patologia , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA