Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(26): 12567-12576, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38855907

RESUMO

Establishing a durable interfacial layer between an electrode and electrolyte to enable micron-sized silicon-based lithium-ion battery (LIB) anodes to achieve superior electrochemical performance is highly desired. Recent studies have shown that heterogeneous encapsulation with enhanced ion/electron transport is an effective strategy. However, the structural design of the existing hetero-coated interface lacks a reasonable ion/electron transport channel, resulting in high interfacial impedance. Herein, we designed a heterogenous MXene-mesoporous polypyrrole (mPPy) encapsulation layer onto micron-sized SiO particles. The MXene coating layer functions as a bridging interface that can build a strong chemical link to internal SiO via covalent bonding, thus reinforcing interfacial charge transfer rate. Meanwhile, it forms a dynamic connection with the outer mPPy through hydrogen bonding, which contributes to high interfacial Li+ concentration and ion/electron coupling transport rate. Accordingly, the as-prepared SiO@MXene@mPPy anode delivers a boosted specific capacity of 673.9 mA h g-1 at 2 A g-1 after 1000 cycles and high-rate capability of 777.4 mA h g-1 at 5 A g-1. Further, electrochemical kinetic analysis indicates that the MXene@mPPy coating layer shows a pseudocapacitance controlled Li storage mechanism, thereby displaying improved high-rate capability. This porous hybrid encapsulation strategy offers new possibilities for a micron-sized SiO anode to achieve an excellent performance.

2.
ACS Appl Mater Interfaces ; 16(5): 5915-5925, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276983

RESUMO

The development of a high-rate SiO lithium-ion battery anode is seriously limited by its low intrinsic conductivity, sluggish interfacial charge transfer (ICT), and unstable dynamic interface. To tackle the above issues, interfacial encapsulation engineering for effectively regulating the interfacial reaction and thus realizing a stable solid electrolyte interphase is significantly important. Hybrid coating, which aims to enhance the coupled e-/Li+ transport via the employment of dual layers, has emerged as a promising strategy. Herein, we construct a hybrid MXene-graphene oxide (GO) coating layer on the SiO microparticles. In the design, Ti3C2Tx MXene acts as a "bridge", which forms a close covalent connection with SiO and GO through Ti-O-Si and Ti-O-C bonds, respectively, thus greatly reducing the ICT resistance. Moreover, the Ti3C2Tx with rich surface groups (e.g., -OH, -F) and GO outer layers with an intertwined porous framework synergistically enable the pseudocapacitance dominated behavior, which is beneficial for fast lithium-ion storage. Accordingly, the as-made Si@MXene@GO anode exhibits considerably reinforced lithium-ion storage performance in terms of superior rate performance (1175.9 mA h g-1 at 5 A g-1) and long cycling stability (1087.6 mA h g-1 capacity retained after 1000 cycles at 2.0 A g-1). In-depth interfacial chemical composition analysis further reveals that an inorganically rich interphase with a gradient distribution of LiF and Li2O formed at the electrolyte/anode interface ensures mechanical stability during repeated cycles. This work paves a feasible way for maximizing the potential of SiO anodes toward fast-charging lithium-ion batteries.

3.
ACS Nano ; 17(21): 20850-20874, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921490

RESUMO

With the accelerated penetration of the global electric vehicle market, the demand for fast charging lithium-ion batteries (LIBs) that enable improvement of user driving efficiency and user experience is becoming increasingly significant. Robust ion/electron transport paths throughout the electrode have played a pivotal role in the progress of fast charging LIBs. Yet traditional graphite anodes lack fast ion transport channels, which suffer extremely elevated overpotential at ultrafast power outputs, resulting in lithium dendrite growth, capacity decay, and safety issues. In recent years, emergent multiscale porous anodes dedicated to building efficient ion transport channels on multiple scales offer opportunities for fast charging anodes. This review survey covers the recent advances of the emerging multiscale porous anodes for fast charging LIBs. It starts by clarifying how pore parameters such as porosity, tortuosity, and gradient affect the fast charging ability from an electrochemical kinetic perspective. We then present an overview of efforts to implement multiscale porous anodes at both material and electrode levels in diverse types of anode materials. Moreover, we critically evaluate the essential merits and limitations of several quintessential fast charging porous anodes from a practical viewpoint. Finally, we highlight the challenges and future prospects of multiscale porous fast charging anode design associated with materials and electrodes as well as crucial issues faced by the battery and management level.

4.
Nanoscale ; 15(32): 13202-13223, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37526946

RESUMO

In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Nanopartículas/química , Nanomedicina , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
5.
Natl Sci Rev ; 8(6): nwaa152, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34691656

RESUMO

Despite desirable progress in various assembly tactics, the main drawback associated with current assemblies is the weak interparticle connections limited by their assembling protocols. Herein, we report a novel boron doping-induced interconnection-assembly approach for fabricating an unprecedented assembly of mesoporous silicon oxycarbide nanospheres, which are derived from periodic mesoporous organosilicas. The as-prepared architecture is composed of interconnected, strongly coupled nanospheres with coarse surfaces. Significantly, through delicate analysis of the as-formed boron doped species, a novel melt-etching and nucleation-growth mechanism is proposed, which offers a new horizon for the developing interconnected assembling technique. Furthermore, such unique strategy shows precise controllability and versatility, endowing the architecture with tunable interconnection size, surface roughness and switchable primary nanoparticles. Impressively, this interconnected assembly along with tunable surface roughness enables intrinsically dual (both structural and interfacial) stable characteristics, achieving extraordinary long-term cycle life when used as a lithium-ion battery anode.

6.
ACS Nano ; 15(10): 15567-15593, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34569781

RESUMO

To accelerate the commercial implementation of high-energy batteries, recent research thrusts have turned to the practicality of Si-based electrodes. Although numerous nanostructured Si-based materials with exceptional performance have been reported in the past 20 years, the practical development of high-energy Si-based batteries has been beset by the bias between industrial application with gravimetrical energy shortages and scientific research with volumetric limits. In this context, the microscale design of Si-based anodes with densified microstructure has been deemed as an impactful solution to tackle these critical issues. However, their large-scale application is plagued by inadequate cycling stability. In this review, we present the challenges in Si-based materials design and draw a realistic picture regarding practical electrode engineering. Critical appraisals of recent advances in microscale design of stable Si-based materials are presented, including interfacial tailoring of Si microscale electrode, surface modification of SiOx microscale electrode, and structural engineering of hierarchical microscale electrode. Thereafter, other practical metrics beyond active material are also explored, such as robust binder design, electrolyte exploration, prelithiation technology, and thick-electrode engineering. Finally, we provide a roadmap starting with material design and ending with the remaining challenges and integrated improvement strategies toward Si-based full cells.

7.
ACS Appl Mater Interfaces ; 12(22): 24796-24805, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383587

RESUMO

A new two-dimensional material (MXene) has been compounded lately with silicon as anodes for lithium-ion batteries to achieve excellent lithium storage performances on account of its unique properties, such as high electrical conductivities, low ion diffusion barrier, and large surface area. However, the exposed silicon particles may lead to fast capacity decaying upon direct contact with the electrolyte. To solve this issue, the porous silicon and SiOx are introduced into Ti3C2Tx to construct a conductive network, and then Ti3C2@Si/SiOx are covered with amorphous TiO2 to make a sandwiched Ti3C2@Si/SiOx@TiO2 composite. Owing to the cooperation of the Ti3C2 matrix, Si/SiOx interlayer, and amorphous TiO2 layer, the reversible capacity of the Ti3C2@Si/SiOx@TiO2 composite with a sandwiched structure can be maintained at 939 mA h g-1 after 100 cycles and enhanced capacity retention capabilities in the initial 10 cycles can be came ture. The combination of these four components also makes the Ti3C2@Si/SiOx@TiO2 composite material a promising application prospect in lithium-ion batteries.

8.
Chemistry ; 26(7): 1488-1496, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31603568

RESUMO

The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.

9.
Chem Commun (Camb) ; 55(71): 10531-10534, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31424060

RESUMO

The void space is widely used in anode materials for relieving the volume expansion during lithium insertion and extraction processes. Generally, the void is randomly generated or exceeded the expansion to ensure the structural stability, which thus sacrifices the capacity and energy density. In this research, a core-satellite architecture was constructed with an elaborate structural design to obtain a rational balance of the void space and capacity. Such well fabricated silicon@porous silicon@carbon (Si@pSi@C) core-satellite nanoparticles with a precise void space present a satisfactory capacity of 1002 mA h g-1 over 100 cycles at a current of 100 mA g-1. This delicate core-satellite architecture could promote the use of the structural design in high-energy density lithium-ion batteries.

10.
ACS Appl Mater Interfaces ; 11(36): 33082-33090, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418549

RESUMO

Prussian blue (PB) and its analogues (PBAs) have been acknowledged as promising materials for the catalysis, energy storage, and bioapplications because of different constructions and tunable composition. The approach for surface modification with metal oxides for boosting the performance, however, is rarely reported. Herein, a facile surface anchoring strategy has been proposed to realize CeO2 nanocrystals uniformly depositing on the surface of PB. Besides, the size, thickness, and depositing density of CeO2 nanocrystals can be regulated by adjusting the amount of the precursor and the proportion of ethanol and deionized water. Furthermore, after a step of confined pyrolysis treatment under an air atmosphere, CeO2 nanocrystals with an encapsulated iron oxide structure have been obtained. This shows a remarkable cycling and rate performance when evaluated as an anode of the lithium-ion battery. The surface anchoring approach of the CeO2 nanocrystals may not only promote the various applications of PB-based materials but also provide an opportunity for developing the architecture of other CeO2-based core-shell nanostructures.

11.
Nano Lett ; 19(8): 5423-5430, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31347853

RESUMO

Electrocatalytic denitrification is considered as the most promising technology to transform nitrates to nitrogen gas in sewage so far. Although noble metal-based catalysts as a cathode material have reached decent removal capacity of nitrate, the high cost is the main hamper of electrocatalytic reduction. Therefore, the development of alternative catalysis toward highly effective denitrification is imperative yet still remains a significant challenge. Herein, a corchorifolius-like structure, where Fe nanoparticles are sealed in carbon microspheres (CL-Fe@C) with a rough surface, has been elaborately designed by self-assemble strategy. Impressively, the architectured CL-Fe@C microspheres are surrounded with a lot of small iron nanoparticles and contain the high iron content of ∼74%. As a result, an excellent removal capacity of 1816 mg N/g Fe and a high nitrogen selectivity of 98% under a very low nitrate concentration of 100 mg/L are achieved when using the CL-Fe@C microspheres as electrocatalytic denitrification. The present work not only explores high performance electrocatalysis for the denitrification but also promote new inspiration for the preparation of other iron-based functional materials for diverse applications.

12.
ACS Nano ; 13(7): 7939-7948, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31241893

RESUMO

Due to the abundant potassium resource on the Earth's crust, researchers now have become interested in exploring high-performance potassium-ion batteries (KIBs). However, the large size of K+ would hinder the diffusion of K ions into electrode materials, thus leading to poor energy/power density and cycling performance during the depotassiation/potassiation process. So, few-layered V5S8 nanosheets wrapping a hollow carbon sphere fabricated via a facile hollow carbon template induced method could reversibly accommodate K storage and maintain the structure stability. Hence, the as-obtained V5S8@C electrode enables rapid and reversible storage of K+ with a high specific capacity of 645 mAh/g at 50 mA/g, a high rate capability, and long cycling stability, with 360 and 190 mAh/g achieved after 500 and 1000 cycles at 500 and 2000 mA/g, respectively. The excellent electrochemical performance is superior to the most existing electrode materials. The DFT calculations reveal that V5S8 nanosheets have high electrical conductivity and low energy barriers for K+ intercalation. Furthermore, the reaction mechanism of the V5S8@C electrode in KIBs is probed via the in operando synchrotron X-ray diffraction technique, and it indicates that the V5S8@C electrode undergoes a sequential intercalation (KV5S8) and conversion reactions (K2S3) reversibly during the potassiation process.

13.
Front Chem ; 7: 266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058141

RESUMO

Semiconducting metal oxides with abundant active sites are regarded as promising candidates for environmental monitoring and breath analysis because of their excellent gas sensing performance and stability. Herein, mesoporous WO3 nanofibers with a crystalline framework and uniform pore size is successfully synthesized in an aqueous phase using an electrospinning method, with ammonium metatungstate as the tungsten sources, and SiO2 nanoparticles and polyvinylpyrrolidone as the sacrificial templates. The obtained mesoporous WO3 nanofibers exhibit a controllable pore size of 26.3-42.2 nm, specific surface area of 24.1-34.4 m2g-1, and a pore volume of 0.15-0.24 cm3g-1. This unique hierarchical structure, with uniform mesopores and interconnected channels, could facilitate the diffusion and transportation of gas molecules in the framework. Gas sensors, based on mesoporous WO3 nanofibers, exhibit an excellent performance in acetone sensing with a low limit of detection (<1 ppm), short response-recovery time (24 s/27 s), a linear relationship in a broad range, and good selectivity.

14.
Angew Chem Int Ed Engl ; 58(20): 6669-6673, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30829450

RESUMO

The application of high-performance silicon-based anodes, which are among the most prominent anode materials, is hampered by their poor conductivity and large volume expansion. Coupling of silicon-based anodes with carbonaceous materials is a promising approach to address these issues. However, the distribution of carbon in reported hybrids is normally inhomogeneous and above the nanoscale, which leads to decay of coulombic efficiency during deep galvanostatic cycling. Herein, we report a porous silicon-based nanocomposite anode derived from phenylene-bridged mesoporous organosilicas (PBMOs) through a facile sol-gel method and subsequent pyrolysis. PBMOs show molecularly organic-inorganic hybrid character, and the resulting hybrid anode can inherit this unique structure, with carbon distributed homogeneously in the Si-O-Si framework at the atomic scale. This uniformly dispersed carbon network divides the silicon oxide matrix into numerous sub-nanodomains with outstanding structural integrity and cycling stability.

15.
Front Chem ; 6: 539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467539

RESUMO

Silicon nanoparticles (SiNPs) are the promising materials in the various applications due to their unique properties like large surface area, biocompatibility, stability, excellent optical and electrical properties. Surface, optical and electrical properties are highly dependent on particle size, doping of different materials and so on. Porous structures in silicon nanomaterials not only improve the specific surface area, adsorption, and photoluminescence efficiency but also provide numbers of voids as well as the high surface to volume ratio and enhance the adsorption ability. In this review, we focus on the significance of porous silicon/mesoporous silicon nanoparticles (pSiNPs/mSiNPs) in the applications of energy storage, sensors and bioscience. Silicon as anode material in the lithium-ion batteries (LIBs) faces a huge change in volume during charging/discharging which leads to cracking, electrical contact loss and unstable solid electrolyte interphase. To overcome challenges of Si anode in the LIBs, mSiNPs are the promising candidates with different structures and coating of different materials to enhance electrochemical properties. On the basis of optical properties with tunable wavelength, pSiNPs are catching good results in biosensors and gas sensors. The mSiNPs with different structures and modified surfaces are playing an important role in the detection of biomarkers, drug delivery and diagnosis of cancer and tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA