Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(3): 030801, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763392

RESUMO

In the past two decades, quantum key distribution networks based on telecom fibers have been implemented on metropolitan and intercity scales. One of the bottlenecks lies in the exponential decay of the key rate with respect to the transmission distance. Recently proposed schemes mainly focus on achieving longer distances by creating a long-arm single-photon interferometer over two communication parties. Despite their advantageous performance over long communication distances, the requirement of phase locking between two remote lasers is technically challenging. By adopting the recently proposed mode-pairing idea, we realize high-performance quantum key distribution without global phase locking. Using two independent off-the-shelf lasers, we show a quadratic key-rate improvement over the conventional measurement-device-independent schemes in the regime of metropolitan and intercity distances. For longer distances, we also boost the key rate performance by 3 orders of magnitude via 304 km commercial fiber and 407 km ultralow-loss fiber. We expect this ready-to-implement high-performance scheme to be widely used in future intercity quantum communication networks.

2.
Phys Rev Lett ; 126(25): 250502, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241519

RESUMO

Quantum key distribution endows people with information-theoretical security in communications. Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances. Recently, several demonstrations of TF-QKD have been realized. Nevertheless, those experiments are implemented in the laboratory, and therefore a critical question remains about whether the TF-QKD is feasible in real-world circumstances. Here, by adopting the sending-or-not-sending twin-field QKD (SNS-TF-QKD) with the method of actively odd parity pairing (AOPP), we demonstrate a field-test QKD over 428 km of deployed commercial fiber and two users are physically separated by about 300 km in a straight line. To this end, we explicitly measure the relevant properties of the deployed fiber and develop a carefully designed system with high stability. The secure key rate we achieved breaks the absolute key rate limit of repeaterless QKD. The result provides a new distance record for the field test of both TF-QKD and all types of fiber-based QKD systems. Our work bridges the gap of QKD between laboratory demonstrations and practical applications and paves the way for an intercity QKD network with measurement-device-independent security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA