Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Acta Pharm Sin B ; 14(7): 3218-3231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027241

RESUMO

Current cytotoxic T lymphocyte (CTL) activating immunotherapy requires a major histocompatibility complex I (MHC-I)-mediated presentation of tumor-associated antigens, which malfunctions in around half of patients with triple-negative breast cancer (TNBC). Here, we create a LCL161-loaded macrophage membrane decorated nanoparticle (LMN) for immunotherapy of MHC-I-deficient TNBC. SIRPα on the macrophage membrane helps LMNs recognize CD47-expressing cancer cells for targeted delivery of LCL161, which induces the release of high mobility group protein 1 and proinflammatory cytokines from cancer cells. The released cytokines and high mobility group protein 1 activate antitumor immunity by increasing the intratumoral density of the phagocytic macrophage subtype by 15 times and elevating the intratumoral concentration of CTL lymphotoxin by 4.6 folds. LMNs also block CD47-mediated phagocytosis suppression. LMNs inhibit the growth of MHC-I-deficient TNBC tumors, as well as those resistant to combined therapy of anti-PDL1 antibody and albumin-bound paclitaxel, and prolong the survival of animals, during which process CTLs also play important roles. This macrophage membrane-decorated nanoparticle presents a generalizable platform for increasing macrophage-mediated antitumor immunity for effective immunotherapy of MHC-I-deficient cancers.

2.
Sci Adv ; 10(23): eadk9996, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838152

RESUMO

Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)-loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped (ED-sHDL) or chemically conjugated (CD-sHDL) DM1. We found that CD-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than ED-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)-mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving CD-sHDL, leading to a better efficacy and immune memory of CD-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 (CD-Lipo) showed lower immunotoxicity than those with entrapped drug (ED-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.


Assuntos
Nanopartículas , Animais , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Humanos , Receptores Depuradores Classe B/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Lipoproteínas HDL/metabolismo , Portadores de Fármacos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Lipossomos/química , Lipídeos/química
3.
Cancer Discov ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38922581

RESUMO

Comprehensive m6A epitranscriptome profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 non-neoplastic lung (NL) tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptome, proteome and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with NL tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hyper-methylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics through interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small molecule inhibitor markedly diminished both EML4 m6A and protein abundance, and efficiently suppressed lung metastases in vivo.

4.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585946

RESUMO

Gene expression is a multi-step transformation of biological information from its storage form (DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the study of how genomic and transcriptomic variation creates this proteoform diversity, and is limited by the challenges of modeling the complexities of gene-expression. We therefore created moPepGen, a graph-based algorithm that comprehensively enumerates proteoforms in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it detects and quantifies previously unobserved noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling efficient identification and quantitation of previously hidden proteins in both existing and new proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: https://github.com/uclahs-cds/package-moPepGen.

5.
Cell Death Differ ; 31(6): 779-791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654072

RESUMO

Cell plasticity has been found to play a critical role in tumor progression and therapy resistance. However, our understanding of the characteristics and markers of plastic cellular states during cancer cell lineage transition remains limited. In this study, multi-omics analyses show that prostate cancer cells undergo an intermediate state marked by Zeb1 expression with epithelial-mesenchymal transition (EMT), stemness, and neuroendocrine features during the development of neuroendocrine prostate cancer (NEPC). Organoid-formation assays and in vivo lineage tracing experiments demonstrate that Zeb1+ epithelioid cells are putative cells of origin for NEPC. Mechanistically, Zeb1 transcriptionally regulates the expression of several key glycolytic enzymes, thereby predisposing tumor cells to utilize glycolysis for energy metabolism. During this process, lactate accumulation-mediated histone lactylation enhances chromatin accessibility and cellular plasticity including induction of neuro-gene expression, which promotes NEPC development. Collectively, Zeb1-driven metabolic rewiring enables the epigenetic reprogramming of prostate cancer cells to license the adeno-to-neuroendocrine lineage transition.


Assuntos
Neoplasias da Próstata , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Masculino , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Humanos , Animais , Cromatina/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Plasticidade Celular , Glicólise , Montagem e Desmontagem da Cromatina
6.
AJPM Focus ; 3(2): 100180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445027

RESUMO

Introduction: Bacterial vaginosis is the most common vaginal condition among women of reproductive age and has been associated with sexually transmitted infections. This study examines the association between cumulative lifetime violence exposure, bacterial vaginosis, and sexually transmitted infections among Black women at risk for HIV. Methods: HIV-negative Black women in a retrospective cohort study (N=230) completed survey questions on cumulative violence (exposure to sexual or physical abuse before age 18 years and exposure to intimate partner violence or sexual violence [partner or other] after age 18 years and past year), bacterial vaginosis (lifetime and past year), and sexually transmitted infection diagnosis (lifetime and past year). Logistic regression models estimated the associations between cumulative violence, bacterial vaginosis, and sexually transmitted infections. Bacterial vaginosis was examined as a moderator in the association between cumulative violence and sexually transmitted infections. Results: Many women reported cumulative violence exposure (40%), lifetime bacterial vaginosis diagnosis (53%), and lifetime sexually transmitted infection diagnosis (73%). Cumulative violence experience was significantly associated with increased adjusted odds of lifetime bacterial vaginosis diagnosis (AOR=1.98; 95% CI=1.10, 3.54). Lifetime bacterial vaginosis diagnosis (AOR=2.76; 95% CI=1.45, 5.22) and past-year bacterial vaginosis diagnosis (AOR=2.16; 95% CI=1.14, 4.10) were significantly associated with increased odds of lifetime sexually transmitted infection diagnosis. Lifetime bacterial vaginosis diagnosis (AOR=2.10; 95% CI=1.19, 3.70) and past-year bacterial vaginosis diagnosis (AOR=3.00; 95% CI=1.70, 5.31) were significantly associated with past-year sexually transmitted infection diagnosis. Lifetime bacterial vaginosis infection significantly increased the odds of lifetime sexually transmitted infection diagnosis with increasing cumulative violence exposure. Conclusions: Our findings support educating and screening Black women who experience cumulative violence for bacterial vaginosis to reduce the risk of untreated bacterial vaginosis and sexually transmitted infections.

7.
Adv Mater ; 36(3): e2306676, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847869

RESUMO

Tumor-associated endothelial cells (TECs) limit antitumor immunity via inducing apoptosis of infiltrating T lymphocytes through a Fas ligand (FasL) mediated mechanism. Herein, this work creates a peptide-drug conjugate (PDC) by linking 7-ethyl-10-hydroxycamptothecin (SN38) to hydrophilic segments with either RGDR or HKD motif at their C-terminus through a glutathione-responsive linker. The PDCs spontaneously assemble into filaments in aqueous solution. The PDC filaments containing 1% of SN38-RGDR (SN38-HKD/RGDR) effectively target triple-negative breast cancer (TNBC) cells and TECs with upregulated expression of integrin, and induce immunogenic cell death (ICD) of tumor cells and FasL downregulation of TECs. SN38-HKD/RGDR increases infiltration, activity, and viability of CD8+ T cells, and thus inhibits the growth of primary tumors and pulmonary metastasis. This study highlights the synergistic modulation of cancerous cells and TECs with integrin-targeting PDC filaments as a promising strategy for TNBC chemoimmunotherapy.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos T CD8-Positivos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células Endoteliais , Neoplasias Pulmonares/secundário , Apoptose , Linhagem Celular Tumoral
8.
J Clin Invest ; 133(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099497

RESUMO

Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Sirtuínas , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Epigênese Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prolina/metabolismo , Prolina/uso terapêutico , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Sirtuínas/metabolismo
9.
Nat Commun ; 14(1): 7794, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016952

RESUMO

Neuroendocrine prostate cancer is a rapidly progressive and lethal disease characterized by early visceral metastasis, poor prognosis, and limited treatment options. Uncovering the oncogenic mechanisms could lead to the discovery of potential therapeutic avenues. Here, we demonstrate that the RNA-binding protein ELAVL3 is specifically upregulated in neuroendocrine prostate cancer and that overexpression of ELAVL3 alone is sufficient to induce the neuroendocrine phenotype in prostate adenocarcinoma. Mechanistically, ELAVL3 is transcriptionally regulated by MYCN and subsequently binds to and stabilizes MYCN and RICTOR mRNA. Moreover, ELAVL3 is shown to be released in extracellular vesicles and induce neuroendocrine differentiation of adenocarcinoma cells via an intercellular mechanism. Pharmacological inhibition of ELAVL3 with pyrvinium pamoate, an FDA-approved drug, effectively suppresses tumor growth, reduces metastatic risk, and improves survival in neuroendocrine prostate cancer mouse models. Our results identify ELAVL3 as a critical regulator of neuroendocrine differentiation in prostate cancer and propose a drug repurposing strategy for targeted therapies.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Retroalimentação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fenótipo , Adenocarcinoma/genética , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 3/genética
10.
Cancer Res Commun ; 3(9): 1966-1980, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37707389

RESUMO

An accurate estimate of patient survival at diagnosis is critical to plan efficient therapeutic options. A simple and multiapplication tool is needed to move forward the precision medicine era. Taking advantage of the broad and high CD10 expression in stem and cancers cells, we evaluated the molecular identity of aggressive cancer cells. We used epithelial primary cells and developed a breast cancer stem cell­based progressive model. The superiority of the early-transformed isolated molecular index was evaluated by large-scale analysis in solid cancers. BMP2-driven cell transformation increases CD10 expression which preserves stemness properties. Our model identified a unique set of 159 genes enriched in G2­M cell-cycle phases and spindle assembly complex. Using samples predisposed to transformation, we confirmed the value of an early neoplasia index associated to CD10 (ENI10) to discriminate premalignant status of a human tissue. Using a stratified Cox model, a large-scale analysis (>10,000 samples, The Cancer Genome Atlas Pan-Cancer) validated a strong risk gradient (HRs reaching HR = 5.15; 95% confidence interval: 4.00­6.64) for high ENI10 levels. Through different databases, Cox regression model analyses highlighted an association between ENI10 and poor progression-free intervals for more than 50% of cancer subtypes tested, and the potential of ENI10 to predict drug efficacy. The ENI10 index constitutes a robust tool to detect pretransformed tissues and identify high-risk patients at diagnosis. Owing to its biological link with refractory cancer stem cells, the ENI10 index constitutes a unique way of identifying effective treatments to improve clinical care. SIGNIFICANCE: We identified a molecular signature called ENI10 which, owing to its biological link with stem cell properties, predicts patient outcome and drugs efficiency in breast and several other cancers. ENI10 should allow early and optimized clinical management of a broad number of cancers, regardless of the stage of tumor progression.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais/genética , Neprilisina
11.
Adv Sci (Weinh) ; 10(17): e2206889, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092583

RESUMO

Great attention is paid to the role of androgen receptor (AR) as a central transcriptional factor in driving the growth of prostate cancer (PCa) epithelial cells. However, the understanding of the role of androgen in PCa-infiltrated immune cells and the impact of androgen deprivation therapy (ADT), the first-line treatment for advanced PCa, on the PCa immune microenvironment remains limited. On the other hand, immune checkpoint blockade has revolutionized the treatment of certain cancer types, but fails to achieve any benefit in advanced PCa, due to an immune suppressive environment. In this study, it is reported that AR signaling pathway is evidently activated in tumor-associated macrophages (TAMs) of PCa both in mice and humans. AR acts as a transcriptional repressor for IL1B in TAMs. ADT releases the restraint of AR on IL1B and therefore leads to an excessive expression and secretion of IL-1ß in TAMs. IL-1ß induces myeloid-derived suppressor cells (MDSCs) accumulation that inhibits the activation of cytotoxic T cells, leading to the immune suppressive microenvironment. Critically, anti-IL-1ß antibody coupled with ADT and the immune checkpoint inhibitor anti-PD-1 antibody exerts a stronger anticancer effect on PCa following castration. Together, IL-1ß is an important androgen-responsive immunotherapeutic target for advanced PCa.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios , Androgênios , Imunoterapia , Macrófagos/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Microambiente Tumoral
12.
Cell Rep ; 42(2): 112033, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36724072

RESUMO

Cell plasticity and neuroendocrine differentiation in prostate and lung adenocarcinomas are one of the major reasons for therapeutic resistance to targeted therapy. Whether and how metabolic changes contribute to this adenocarcinoma-to-neuroendocrine cell fate transition remains largely unclear. Here we show that neuroendocrine prostate or lung cancer cells possess mostly fragmented mitochondria with low membrane potential and rely on glycolysis for energy metabolism. We further show an important role of the cell fate determinant Numb in mitochondrial quality control via binding to Parkin and facilitating Parkin-mediated mitophagy. Deficiency in the Numb/Parkin pathway in prostate or lung adenocarcinomas causes a metabolic reprogramming featured with a significant increase in production of lactate acid, which subsequently leads to an upregulation of histone lactylation and transcription of neuroendocrine-associated genes. Collectively, the Numb/Parkin-directed mitochondrial fitness is a key metabolic switch and a promising therapeutic target on cancer cell plasticity through the regulation of histone lactylation.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Masculino , Humanos , Histonas/metabolismo , Mitocôndrias/metabolismo , Diferenciação Celular , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
13.
J Natl Cancer Inst ; 115(4): 468-472, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610996

RESUMO

Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Prognóstico , Predisposição Genética para Doença
15.
Oncogene ; 42(8): 559-571, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544044

RESUMO

The incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) has been greatly increasing after the usage of secondgeneration androgen receptor (AR) pathway inhibitors (ARPIs). Neuroendocrine differentiation (NED) is closely associated with ARPI treatment failure and poor prognosis in prostate cancer (PCa) patients. However, the molecular mechanisms of NED are not fully understood. Here we report that upregulation of TRIM59, a TRIM family protein, is strongly correlated with ARPI treatment mediated NED and shorter patient survival in PCas. AR binds to TRIM59 promoter and represses its transcription. ARPI treatment leads to a reversal of repressive epigenetic modifications on TRIM59 gene and the transcriptional restraint on TRIM59 by AR. Upregulated TRIM59 then drives the NED of PCa by enhancing the degradation of RB1 and P53 and upregulating downstream lineage plasticity-promoting transcription factor SOX2. Altogether, TRIM59 is negatively regulated by AR and acts as a key driver for NED in PCas. Our study provides a novel prognostic marker for PCas and shed new light on the molecular pathogenesis of t-NEPC, a deadly variant of PCa.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Proteínas com Motivo Tripartido , Humanos , Masculino , Antagonistas de Receptores de Andrógenos , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Regulação para Cima
16.
Nat Commun ; 13(1): 7506, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473869

RESUMO

Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Camundongos , Humanos , Proteômica , Meduloblastoma/genética , Proteínas de Ligação a RNA/genética , Neoplasias Cerebelares/genética , Proteínas do Tecido Nervoso
18.
Acta Pharm Sin B ; 12(9): 3726-3738, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176911

RESUMO

Metastatic triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer. Combination of systemic chemotherapy and immune checkpoint blockade is effective but of limited benefit due to insufficient intratumoral infiltration of cytotoxic T lymphocytes (CTLs) and the accumulation of immunosuppressive cells. Herein, we designed a lenvatinib- and vadimezan-loaded synthetic high-density lipoprotein (LV-sHDL) for combinational immunochemotherapy of metastatic TNBC. The LV-sHDL targeted scavenger receptor class B type 1-overexpressing 4T1 cells in the tumor after intravenous injection. The multitargeted tyrosine kinase inhibitor (TKI) lenvatinib induced immunogenic cell death of the cancer cells, and the stimulator of interferon genes (STING) agonist vadimezan triggered local inflammation to facilitate dendritic cell maturation and antitumor macrophage differentiation, which synergistically improved the intratumoral infiltration of total and active CTLs by 33- and 13-fold, respectively. LV-sHDL inhibited the growth of orthotopic 4T1 tumors, reduced pulmonary metastasis, and prolonged the survival of animals. The efficacy could be further improved when LV-sHDL was used in combination with antibody against programmed cell death ligand 1. This study highlights the combination use of multitargeted TKI and STING agonist a promising treatment for metastatic TNBC.

19.
Cancer Lett ; 550: 215927, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162714

RESUMO

Prostate cancer (PCa) incidence and mortality have rapidly increased in China. Notably, unique epidemiological characteristics of PCa are found in the Chinese PCa population, including a low but rising incidence and an inferior but improving disease prognosis. Consequently, the current treatment landscape of PCa in China demonstrates distinct features. Establishing a more thorough understanding of the characteristics of Chinese patients may help provide novel insights into potential treatment strategies for PCa patients. Herein, we review the epidemiological status and differences in treatment modalities of Chinese PCa patients. In addition, we discuss the underlying socioeconomic and biological factors that contribute to such diversity and further propose directions for future efforts in optimizing the PCa treatment in China.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/terapia , China/epidemiologia
20.
Cell Death Dis ; 13(8): 735, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008379

RESUMO

Metabolic status is essential in maintaining normal functions of hematopoietic stem cells (HSCs). However, how the dynamic of the mitochondrion, as a central organelle in metabolism, is molecularly regulated to orchestrate metabolism and HSC stemness remains to be elucidated. Here, we focus on the role of Zeb1, a well-characterized epithelial-to-mesenchymal transition (EMT) inducer which has been demonstrated to confer stem-cell-like characteristics in multiple cancer types in stemness regulation of HSCs. Using a Zeb1-tdTomato reporter mouse model, we find that Zeb1+Lin-Sca-1+c-Kit+ cells (Zeb1+-LSKs) represent a subset of functional long-term HSCs. Zeb1+LSKs exhibit a reduced reactive oxygen species (ROS) level, low mitochondrial mass, low mitochondrial membrane potential (MMP), and particularly small, round fragmented mitochondria. Of note, ectopic expression of Zeb1 leads to a fragmented mitochondrial morphology with a low mitochondrial metabolic status in EML cells. In addition, Zeb1-knockout (Zeb1-KO) LSKs from fetal liver display an exhausted stem-cell activity. Zeb1 deficiency results in elongated and tubulated mitochondria with increased mitochondrial mass, elevated MMP, and higher ROS production. Mechanistically, Zeb1 acts as a transcriptional suppressor on the key mitochondrial-fusion protein Mitofusin-2 (encoded by Mfn2). We highlight an important role of Zeb1 in the regulation of mitochondrial morphology in HSC and the metabolic control of HSC stemness by repressing Mfn2-mediated mitochondrial fusion.


Assuntos
Células-Tronco Hematopoéticas , Dinâmica Mitocondrial , Animais , Transição Epitelial-Mesenquimal , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA