Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Biomed Pharmacother ; 177: 117046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981241

RESUMO

Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3ß inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3ß pathway.


Assuntos
Proliferação de Células , Cerebelo , Glicogênio Sintase Quinase 3 beta , Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cerebelo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Benzofenonas/farmacologia , Camundongos , Células Cultivadas , Masculino
2.
FEBS J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978293

RESUMO

Cullin-based RING ligases (CRLs) comprise the largest family of ubiquitin E3 ligases. CRL activity is tightly regulated by cullin neddylation, which has been associated with various diseases. Although inhibitors of CRLs neddylation have been reported, there is a lack of small molecules that can selectively target individual cullins. Here, we identified a natural product, liquidambaric acid (LDA), with relatively selective inhibition properties against cullin (Cul) 2 neddylation, and found that its target, Tumor Necrosis Factor receptor-associated factor 2 (TRAF2) was required for the activity. TRAF2 associates with the Cul2 neddylation complex and regulates the machinery assembly, especially that of E2 (UBC12) and E3 (RBX1) enzymes. In addition, we demonstrated that by intervention of the associations between TRAF2 and the neddylation machinery, LDA disturbed NEDD8 transfer from E1 to E2, therefore blocking Cul2 neddylation. Taken together, we show that TRAF2 plays a positive role in neddylation cascades, and we have identified a small molecule capable of selective modulation of cullin neddylation.

3.
Nanomaterials (Basel) ; 14(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998770

RESUMO

The utilization of a nanoporous (NP) GaN fabricated by electrochemical etching has been demonstrated to be effective in the fabrication of a high-performance ultraviolet (UV) photodetector (PD). However, the NP-GaN PD typically exhibits a low light-dark current ratio and slow light response speed. In this study, we present three types of UV PDs based on an unetched GaN, NP-GaN distributed Bragg reflector (DBR), and NP-GaN-DBR with a Ga2O3 single-crystal film (Ga2O3/NP-GaN-DBR). The unetched GaN PD does not exhibit a significant photoresponse. Compared to the NP-GaN-DBR PD device, the Ga2O3/NP-GaN-DBR PD demonstrates a larger light-dark current ratio (6.14 × 103) and higher specific detectivity (8.9 × 1010 Jones) under 365 nm at 5 V bias due to its lower dark current (3.0 × 10-10 A). This reduction in the dark current can be attributed to the insertion of the insulating Ga2O3 between the metal and the NP-GaN-DBR, which provides a thicker barrier thickness and higher barrier height. Additionally, the Ga2O3/NP-GaN-DBR PD device exhibits shorter rise/decay times (0.33/0.23 s) than the NP-GaN-DBR PD, indicating that the growth of a Ga2O3 layer on the DBR effectively reduces the trap density within the NP-GaN DBR structure. Although the device with a Ga2O3 layer presents low photoresponsivity (0.1 A/W), it should be feasible to use Ga2O3 as a dielectric layer based on the above-mentioned reasons.

4.
Mol Pharm ; 21(8): 4012-4023, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38957041

RESUMO

Oral ulcers present as recurrent and spontaneous lesions, often causing intolerable burning pain that significantly disrupts patients' daily lives and compromises their quality of life. In addressing this clinical challenge, oral dissolving films (ODFs) have emerged as promising pharmaceutical formulations for oral ulcer management due to their rapid onset of action, ease of administration, and portability. In this study, ODFs containing the insoluble drug dexamethasone (Dex) were formulated for the treatment of oral ulcers in rabbits using a solvent casting method with ethanol as the solvent. To optimize the composition of the ODFs, a Box-Behnken Design (BBD) experiment was employed to investigate the effects of varying concentrations of hydroxypropyl cellulose (HPC), low-substituted hydroxypropyl cellulose (L-HPC), and plasticizer (glycerol) on key parameters, such as disintegration time, tensile strength, and peel-off efficiency of the films. Subsequently, the film properties of the Dex-loaded ODFs (ODF@Dex) were thoroughly assessed, revealing favorable attributes, including homogeneity, mechanical strength, and solubility. Notably, the use of ethanol as the solvent in the ODF preparation facilitated the homogeneous distribution of insoluble drugs within the film matrix, thereby enhancing their solubility and dissolution rate. Leveraging the potent pharmacological activity of Dex, ODF@Dex was further evaluated for its efficacy in promoting ulcer healing and mitigating the expression of inflammatory factors both in vitro and in vivo. The findings demonstrated that the ODF@Dex exerted significant antiulcer effects by modulating the PI3K/Akt signaling pathway, thus contributing to ulcer resolution. In conclusion, our study underscores the potential of HPC-based ODFs formulated with ethanol as a solvent as a promising platform for delivering insoluble drugs, offering a viable strategy for the clinical management of oral ulcers.


Assuntos
Celulose , Dexametasona , Úlceras Orais , Solubilidade , Dexametasona/química , Dexametasona/administração & dosagem , Celulose/análogos & derivados , Celulose/química , Coelhos , Animais , Úlceras Orais/tratamento farmacológico , Administração Oral , Masculino , Resistência à Tração , Liberação Controlada de Fármacos , Etanol/química , Etanol/administração & dosagem , Composição de Medicamentos/métodos
5.
Int J Biol Macromol ; 277(Pt 2): 134303, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084431

RESUMO

Skin damage from sun exposure is a common issue among outdoor workers and is primarily caused by ultraviolet rays. Upon absorption of these rays, the skin will experience inflammation and cell apoptosis. This study explored the concept of 'Combination of medicine and adjuvant' by utilizing Gastrodia elata polysaccharide, a key component of Gastrodia elata Bl.|, to develop a new hydrogel material. Oxidized Gastrodia elata polysaccharide (OGEP) and carboxymethyl chitosan (CMCS) was use to prepare a biocompatible, biodegradable and self-healing hydrogel OGEP/CMCS (OC). And this hydrogel was further loaded with Gastrodin-containing microspheres (GAS/GEL) to create GAS/GEL/OGEP/CMCS (GGOC) hydrogel. Characterization studies revealed that OC and GGOC hydrogels exhibited favorable mechanical properties, antioxidant activity and biocompatibility. The experiments showed that OC and GGOC hydrogels could regulate mitochondrial membrane potential, prevent mitochondrial breakage, inhibit proinflammatory factors, prevent NF-κB protein activation and regulate apoptosis-related pathways. This study highlighted the application potential of Gastrodia elata polysaccharide as a 'Combination of medicine and adjuvant' and the anti-UVB damage effect of the prepared hydrogel.


Assuntos
Álcoois Benzílicos , Gastrodia , Glucosídeos , Hidrogéis , Microesferas , Polissacarídeos , Pele , Raios Ultravioleta , Gastrodia/química , Hidrogéis/química , Hidrogéis/farmacologia , Glucosídeos/farmacologia , Glucosídeos/química , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Apoptose/efeitos dos fármacos , Camundongos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
7.
Sci Adv ; 10(31): eadp6436, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083610

RESUMO

Host range specificity is a prominent feature of the legume-rhizobial symbiosis. Sinorhizobium meliloti and Sinorhizobium medicae are two closely related species that engage in root nodule symbiosis with legume plants of the Medicago genus, but certain Medicago species exhibit selectivity in their interactions with the two rhizobial species. We have identified a Medicago receptor-like kinase, which can discriminate between the two bacterial species, acting as a genetic barrier against infection by most S. medicae strains. Activation of this receptor-mediated nodulation restriction requires a bacterial gene that encodes a glycine-rich octapeptide repeat protein with distinct variants capable of distinguishing S. medicae from S. meliloti. This study sheds light on the coevolution of host plants and rhizobia, shaping symbiotic selectivity in their respective ecological niches.


Assuntos
Simbiose , Especificidade da Espécie , Medicago/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética
8.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38715407

RESUMO

Facial palsy can result in a serious complication known as facial synkinesis, causing both physical and psychological harm to the patients. There is growing evidence that patients with facial synkinesis have brain abnormalities, but the brain mechanisms and underlying imaging biomarkers remain unclear. Here, we employed functional magnetic resonance imaging (fMRI) to investigate brain function in 31 unilateral post facial palsy synkinesis patients and 25 healthy controls during different facial expression movements and at rest. Combining surface-based mass-univariate analysis and multivariate pattern analysis, we identified diffused activation and intrinsic connection patterns in the primary motor cortex and the somatosensory cortex on the patient's affected side. Further, we classified post facial palsy synkinesis patients from healthy subjects with favorable accuracy using the support vector machine based on both task-related and resting-state functional magnetic resonance imaging data. Together, these findings indicate the potential of the identified functional reorganizations to serve as neuroimaging biomarkers for facial synkinesis diagnosis.


Assuntos
Paralisia Facial , Imageamento por Ressonância Magnética , Sincinesia , Humanos , Imageamento por Ressonância Magnética/métodos , Paralisia Facial/fisiopatologia , Paralisia Facial/diagnóstico por imagem , Paralisia Facial/complicações , Masculino , Feminino , Sincinesia/fisiopatologia , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Expressão Facial , Biomarcadores , Córtex Motor/fisiopatologia , Córtex Motor/diagnóstico por imagem , Mapeamento Encefálico , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Máquina de Vetores de Suporte
10.
J Agric Food Chem ; 72(18): 10339-10354, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682702

RESUMO

The current study aimed to assess the effectiveness of pharmacological intervention with Platycodin D (PD), a critically active compound isolated from the roots of Platycodon grandiflorum, in mitigating cardiotoxicity in a murine model of type 2 diabetes-induced cardiac injury and in H9c2 cells in vitro. Following oral administration for 4 weeks, PD (2.5 mg/kg) significantly suppressed the elevation of fasting blood glucose (FBG) levels, improved dyslipidemia, and effectively inhibited the rise of the cardiac injury markers creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT). PD treatment could ameliorate energy metabolism disorders induced by impaired glucose uptake by activating AMPK protein expression in the DCM mouse model, thereby promoting the GLUT4 transporter and further activating autophagy-related proteins. Furthermore, in vitro experiments demonstrated that PD exerted a concentration-dependent increase in cell viability while also inhibiting palmitic acid and glucose (HG-PA)-stimulated H9c2 cytotoxicity and activating AMPK protein expression. Notably, the AMPK activator AICAR (1 mM) was observed to upregulate the expression of AMPK in H9c2 cells after high-glucose and -fat exposure. Meanwhile, we used AMPK inhibitor Compound C (20 µM) to investigate the effect of PD activation of AMPK on cells. In addition, the molecular docking approach was employed to dock PD with AMPK, revealing a binding energy of -8.2 kcal/mol and indicating a tight interaction between the components and the target. PD could reduce the expression of autophagy-related protein p62, reduce the accumulation of autophagy products, promote the flow of autophagy, and improve myocardial cell injury. In conclusion, it has been demonstrated that PD effectively inhibits cardiac injury-induced type 2 diabetes in mice and enhances energy metabolism in HG-PA-stimulated H9c2 cells by activating the AMPK signaling pathway. These findings collectively unveil the potential cardioprotective effects of PD via modulation of the AMPK signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Saponinas , Transdução de Sinais , Triterpenos , Animais , Humanos , Masculino , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Platycodon/química , Saponinas/química , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia
11.
Biomed Pharmacother ; 175: 116624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670045

RESUMO

Drug resistance presents a formidable challenge in the realm of breast cancer therapy. Accumulating evidence suggests that enhancer of zeste homolog 2 (EZH2), a component of the polycomb repressive complex 2 (PRC2), may serve as a key regulator in controlling drug resistance. EZH2 overexpression has been observed in breast cancer and many other malignancies, showing a strong correlation with poor outcomes. This review aims to summarize the mechanisms by which EZH2 regulates drug resistance, with a specific focus on breast cancer, in order to provide a comprehensive understanding of the underlying molecular processes. Additionally, we will discuss the current strategies and outcomes of targeting EZH2 using both single agents and combination therapies, with the goal of offering improved guidance for the clinical treatment of breast cancer patients who have developed drug resistance.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Terapia de Alvo Molecular , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica
12.
Oncogene ; 43(20): 1506-1521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519641

RESUMO

Wnt/ß-catenin signalling is aberrantly activated in most colorectal cancer (CRC) and is one key driver involved in the initiation and progression of CRC. However, mutations of APC gene in CRC patients retain certain activity of APC protein with decreased ß-catenin signalling and DKK4 expression significantly upregulates and represses Wnt/ß-catenin signalling in human CRC tissues, suggesting that a precisely modulated activation of the Wnt/ß-catenin pathway is essential for CRC formation and progression. The underlying reasons why a specifically reduced degree, not a fully activating degree, of ß-catenin signalling in CRC are unclear. Here, we showed that a soluble extracellular inhibitor of Wnt/ß-catenin signalling, DKK4, is an independent factor for poor outcomes in CRC patients. DKK4 secreted from CRC cells inactivates ß-catenin in fibroblasts to induce the formation of stress fibre-containing fibroblasts and myofibroblasts in culture conditions and in mouse CRC xenograft tissues, resulting in restricted expansion in tumour masses at primary sites and enhanced CRC metastasis in mouse models. Reduced ß-catenin activity by a chemical inhibitor MSAB promoted the CRC metastasis. Our findings demonstrate why reduced ß-catenin activity is needed for CRC progression and provide a mechanism by which interactions between CRC cells and stromal cells affect disease promotion.


Assuntos
Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intercelular , Metástase Neoplásica , Via de Sinalização Wnt , beta Catenina , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Linhagem Celular Tumoral , Masculino , Feminino , Camundongos Nus
13.
J Pharm Sci ; 113(8): 2232-2244, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38492845

RESUMO

Hyperthermia can be integrated with tumor-killing chemotherapy, radiotherapy and immunotherapy to give rise to an anti-tumor response. To this end, a nano-delivery system is built, which can connect hyperthermia and immunotherapy. On this basis, the impact of such a combination on the immune function of dendritic cells (DCs) is explored. The core of this system is the photothermal material gold nanorod (GNR), and its surface is covered with a silica shell. Additionally, it also forms a hollow mesoporous structure using the thermal etching approach, followed by modification of targeted molecule folic acid (FA) on its surface, and eventually forms a hollow mesoporous silica gold nanorod (GNR@void@mSiO2) modified by FA. GNR@void@mSiO2-PEG-FA (GVS-FA) performs well in photothermal properties, drug carriage and release and tumor targeting performance. Furthermore, the thermotherapy of tumor cells through in vitro NIR irradiation can directly kill tumor cells by inhibiting proliferation and inducing apoptosis. GVS-FA loaded with imiquimod (R837) can be used as a adjuvant to enhance the immune function of DCs through hyperthermia.


Assuntos
Células Dendríticas , Ouro , Imunoterapia , Nanotubos , Neoplasias , Terapia Fototérmica , Ouro/química , Nanotubos/química , Imunoterapia/métodos , Terapia Fototérmica/métodos , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Porosidade , Linhagem Celular Tumoral , Terapia Combinada/métodos , Animais , Imiquimode/administração & dosagem , Ácido Fólico/química , Camundongos , Silício/química , Dióxido de Silício/química , Apoptose/efeitos dos fármacos
14.
NPJ Precis Oncol ; 8(1): 61, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431733

RESUMO

Tertiary lymphoid structure (TLS) contributes to the anti-tumor immune response, and predicts the prognosis of colorectal cancer patients. However, the potential impact of TLS in shaping the immune status of rectal adenocarcinoma, and the intrinsic relationship between TLS and neoadjuvant therapies (neoTx) remain unclear. We performed hematoxylin-eosin staining, immunohistochemical and biomolecular analyses to investigate TLS and tumor-infiltrating lymphocytes (TILs) in 221 neoTx-treated and 242 treatment-naïve locally advanced rectal cancer (LARC) patients. High TLS density was significantly associated with the absence of vascular invasion, a lower neutrophil-to-lymphocyte ratio, increased TLS maturity, a longer recurrence-free survival (RFS) (hazard ratio [HR] 0.2985 95% confidence interval [CI] 0.1894-0.4706, p < 0.0001) and enhanced infiltration of adaptive immune cells. Biomolecular analysis showed that high TLS-score was strongly associated with more infiltration of immune cells and increased activation of immune-related pathways. TLS+ tumors in pre-treatment specimens were associated with a higher proportion of good respond (62.5% vs. 29.8%, p < 0.0002) and pathological complete remission (pCR) (40.0% vs. 11.1%, p < 0.0001), and significantly increased RFS (HR 0.3574 95%CI 0.1489-0.8578 p = 0.0213) compared with TLS- tumors in the neoTx cohort, which was confirmed in GSE119409 and GSE150082. Further studies showed that neoTx significantly reduced TLS density and maturity, and abolished the prognostic value of TLS. Our study illustrates that TLS may have a key role in mediating the T-cell-inflamed tumor microenvironment, which also provides a new direction for neoTx, especially neoadjuvant immunotherapy, in LRAC patients.

15.
Regen Biomater ; 11: rbae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487713

RESUMO

The prognosis of glioblastoma (GBM) remains challenging, primarily due to the lack of a precise, effective imaging technique for comprehensively characterization. Addressing GBM diagnostic challenges, our study introduces an innovative dual-modal imaging that merges near-infrared (NIR) fluorescent imaging with magnetic resonance imaging (MRI). This method employs superparamagnetic iron oxide nanoparticles coated with NIR fluorescent dyes, specifically Cyanine 7, and targeted peptides. This synthetic probe facilitates MRI functionality through superparamagnetic iron oxide nanoparticles, provides NIR imaging capability via Cyanine 7 and enhances tumor targeting trough peptide interactions, offering a comprehensive diagnostic tool for GBM. Notably, the probe traverses the blood-brain barrier, targeting GBM in vivo via peptides, producing clear and discernible images in both modalities. Cytotoxicity and histopathology assessments confirm the probe's favorable safety profile. These findings suggest that the dual-modal MR\NIR fluorescent imaging probe could revolutionize GBM prognosis and survival rates, which can also be extended to other tumors type.

16.
Front Immunol ; 15: 1308068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524138

RESUMO

Background: Autoimmune nodopathy (AN) has emerged as a novel diagnostic category that is pathologically different from classic chronic inflammatory demyelinating polyneuropathy. Clinical manifestations of AN include sensory or motor neuropathies, sensory ataxia, tremor, and cranial nerve involvement. AN with a serum-positive contactin-1 (CNTN1) antibody usually results in peripheral nerve demyelination. In this study, we reported a rare case of AN with CNTN1 antibodies characterized by the presence of CNTN1 antibodies in both serum and cerebrospinal fluid, which is associated with cerebellar dysarthria. Methods: A 25-year-old man was admitted to our hospital due to progressive dysarthria with limb tremors. The patient was initially diagnosed with peripheral neuropathy at a local hospital. Three years after onset, he was admitted to our hospital due to dysarthria, apparent limb tremor, and limb weakness. At that time, he was diagnosed with spinocerebellar ataxia. Eight years post-onset, during his second admission, his condition had notably deteriorated. His dysarthria had evolved to typical distinctive cerebellar characteristics, such as tremor, loud voice, stress, and interrupted articulation. Additionally, he experienced further progression in limb weakness and developed muscle atrophy in the distal limbs. Magnetic resonance imaging (MRI), nerve conduction studies (NCS), and autoimmune antibody tests were performed. Results: The results of the NCS suggested severe demyelination and even axonal damage to the peripheral nerves. MRI scans revealed diffuse thickening of bilateral cervical nerve roots, lumbosacral nerve roots, cauda equina nerve, and multiple intercostal nerve root sheath cysts. Furthermore, anti-CNTN1 antibody titers were 1:10 in the cerebrospinal fluid (CSF) and 1:100 in the serum. After one round of rituximab treatment, the patient showed significant improvement in limb weakness and dysarthria, and the CSF antibodies turned negative. Conclusion: Apart from peripheral neuropathies, cerebellar dysarthria (central nervous system involvement) should not be ignored in AN patients with CNTN1 antibodies.


Assuntos
Disartria , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Masculino , Humanos , Adulto , Disartria/complicações , Tremor/complicações , Contactina 1 , Ataxia
17.
J Acoust Soc Am ; 155(2): 1182-1197, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341744

RESUMO

The steered response power (SRP) with phase transform algorithm has been demonstrated to be robust against reverberation and noise for single-source localization. However, when this algorithm is applied to multisource localization (MSL), the "peak missing problem" can occur, namely, that some sources dominate over others over short time intervals, resulting in fewer significant SRP peaks being found than the true number of sources. This problem makes it difficult to detect all the sources among the available SRP peaks. We propose an iteratively reweighted steered response power (IR-SRP) approach that effectively solves the "peak missing problem" and achieves robust MSL in reverberant noisy environments. The initial IR-SRP localization function is computed over the time-frequency (T-F) bins selected by a combination of two weighting schemes, one using coherence, and the other using signal-to-noise ratio. When iterating, our method finds the significant SRP peaks for the dominant sources and eliminates the T-F bins contributed by these sources using inter-channel phase difference information. As a result, the remaining sources can be found in subsequent iterations among the remaining T-F bins. The proposed IR-SRP method is demonstrated using both simulated and measured experiment data.

18.
Neuroimage ; 289: 120549, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382864

RESUMO

The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.


Assuntos
Córtex Insular , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico , Dor
19.
Artigo em Inglês | MEDLINE | ID: mdl-38330586

RESUMO

Background: Chest pain, a sudden and perilous symptom, is frequently encountered in the emergency department. Prompt and efficient first-aid measures and nursing interventions are crucial for effectively rescuing emergency patients experiencing chest pain. Objective: This study aims to investigate the impact of an enhanced emergency nursing process on the rescue outcomes of emergency patients with chest pain. Design: A randomized controlled study was conducted. Setting: The research was conducted at Suzhou Hospital of Integrated Traditional Chinese and Western Medicine. Participants: A total of 90 emergency chest pain patients admitted between December 2021 and June 2022 were selected and divided into two groups, with 45 cases in each group. Interventions: The control group received routine emergency nursing, while the observation group underwent an improved emergency nursing protocol. Primary Outcome Measures: (1) Treatment initiation time, emergency rescue time, recovery time of vital signs, and hospital stay; (2) curative effect; (3) pain scores; (4) incidence of adverse events; and (5) patient satisfaction. Results: Compared to the control group, the observation group exhibited shorter treatment initiation time, emergency rescue time, recovery time of vital signs, and hospital stay (P < .05). The effective rate in the observation group was higher (P < .05), and pain scores were lower at 30 min, 60 min, 120 min, and 240 min post-rescue (P < .05). The occurrence of adverse events was reduced in the observation group (P = .005), and patient satisfaction was higher at discharge (P < .05). Conclusion: The enhanced emergency nursing process effectively reduces the clinical rescue time for emergency patients with chest pain, enhances rescue efficiency, seizes crucial opportunities for saving lives, and improves patient satisfaction. These findings have significant positive implications for clinical applications.

20.
Phytomedicine ; 123: 155173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976695

RESUMO

BACKGROUND: ShuGan-QieZhi capsule (SGQZC) is a traditional Chinese preparation used to treat hyperlipidemia and obesity, even non-alcoholic fatty liver disease (NAFLD). However, its therapeutic effects, main bioactive ingredients, as well as potential mechanisms for NAFLD are still unclear. PURPOSE: To investigate the pharmacological effect, main active ingredients, and mechanisms of SGQZC against high-fat diet (HFD)-induced NAFLD in mice. METHODS: NAFLD models were established by feeding C57BL/6 J mice an HFD for 24 weeks. From the 12th week, HFD-fed mice received daily gavage of either SGQZC or silibinin for 12 weeks. Hepatic hypertrophy parameters, along with hepatic and systemic lipid metabolism changes in NAFLD mice, were assessed. Oil red O and histopathological staining techniques determined lipid accumulation and liver injury severity. qRT-PCR analysis measured the expression of genes tied to liver lipid metabolism and inflammation. HPLC-MS/MS identified the primary components of SGQZC in the serum. Human normal hepatocytes (LO2) and hepatic stellate cells (LX-2) were used to screen SGQZC's bioactive ingredients. Network pharmacological analysis, transcriptomics, and western blotting delved into SGQZC's synergistic mechanisms against NAFLD. RESULTS: SGQZC ameliorated abnormal lipid metabolism and liver hypertrophy in mice with HFD-induced NAFLD, consequently reducing hepatic lipid accumulation, inflammatory cell infiltration, and liver impairment. Eight crucial components of SGQZC were detected in serum using HPLC-MS/MS and were found to effectively attenuate lipid accumulation and inflammation in liver cells. Further investigation indicated that SGQZC modulates MAPK pathway and AKT/NF-κB pathway, subsequently improving lipid metabolism and inflammation. CONCLUSION: SGQZC alleviates NAFLD by synergistically modulating the MAPK-mediated lipid metabolism and inhibiting AKT/NF-κB pathways-mediated inflammation. Our findings reveal the enormous potential of SGQZC for the treatment of NAFLD, providing a possible new clinical therapeutic strategy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas em Tandem , Camundongos Endogâmicos C57BL , Fígado , Inflamação/tratamento farmacológico , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Hipertrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA