Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 25230-25244, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475333

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful technique for detection and identification of trace amounts of molecules with high specificity. A variety of two- and three-dimensional (3D) SERS substrates have been developed. Among these SERS substrates, to further develop new morphology of 3D SERS-active substrate with robust SERS functionality is still desired and necessary. In this paper, what we believe to be a novel and effective SERS-active substrate based on large-scale 3D Si hierarchical nanoarrays in conjunction with homogeneous Au nanoparticles (AuNPs) was proposed. Its building block shaped like the umbrella-frame structure was fabricated by a simple and cost-effective top-down nanofabrication method. Such umbrella-frame structure achieved excellent SERS performance with high sensitivity and spatial uniformity. For R6G molecules, the detection limit can be as low as 10-14 M, with an enhancement factor of up to 107. The relative standard deviation can reach about 11% above 30 positions across an area of 100×100 µm2. This is mainly attributed to much more active-sites provided by the umbrella-frame structure for adsorption of target molecules and AuNPs, and sufficient 3D hotspots generated by the coupling between the SiNRs guided mode and AuNPs localized surface plasmon resonance (LSPR), as well as that between AuNPs LSPR. Especially by introducing the umbrella-ribs SiNRs and AuNPs, the light field can be greatly confined to the structure surface, creating strongly enhanced and even zero-gap fields in 3D space. Moreover, the proposed SERS-active substrate can be erased and reused multiple times by plasma cleaning and exhibits typically excellent recyclability and stability for robust SERS activity. The experimental results demonstrate the proposed substrate may serve as a promising SERS platform for trace detection of chemical and biological molecules.

2.
Rev Sci Instrum ; 94(3): 033103, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012802

RESUMO

Developing the synchrotron radiation experiment method based on combined technology offers more information on the formation mechanism of new materials and their physical and chemical properties. In this study, a new small-angle x-ray scattering/ wide-angle x-ray scattering/ Fourier-transform infrared spectroscopy (SAXS/WAXS/FTIR) combined setup was established. Using this combined SAXS/WAXS/FTIR setup, x-ray and FTIR signals can be obtained simultaneously from the same sample. The in situ sample cell was designed to couple two FTIR optical paths for the attenuated total reflection and transmission modes, which greatly saved the time of adjusting and aligning the external infrared light path when switching between the two modes with good accuracy. A transistor-transistor logic circuit was used to trigger the synchronous acquisition from the IR and x-ray detectors. A special sample stage is designed, allowing access by the IR and x-ray with temperature and pressure control. The newly developed, combined setup can be used to observe the evolution of the microstructure during the synthesis of composite materials in real-time at both the atomic and molecular levels. The crystallization of polyvinylidene fluoride (PVDF) at different temperatures was observed. The time-dependent experimental data demonstrated the success of the in situ SAXS, WAXS, and FTIR study of the structural evolution, which is feasible to track the dynamic processes.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3315-8, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-26964201

RESUMO

A new method of terahertz (THz) imaging based on the mean absorption is proposed. Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. THz pulse imaging emerges as a novel tool in many fields because of its low energy and non-ionizing character, such as material, chemical, biological medicine and food safety. A character of THz imaging technique is it can get large amount of information. How to extract the useful parameter from the large amount of information and reconstruct sample's image is a key technology in THz imaging. Some efforts have been done for advanced visualization methods to extract the information of interest from the raw data. Both time domain and frequency domain visualization methods can be applied to extract information on the physical properties of samples from THz imaging raw data. The process of extracting useful parameter from raw data of the new method based on the mean absorption was given in this article. This method relates to the sample absorption and thickness, it delivers good signal to noise ratio in the images, and the dispersion effects are cancelled. A paper with a "THz" shape hole was taken as the sample to do the experiment. Traditional THz amplitude imaging methods in time domain and frequency domain are used to achieve the sample's image, such as relative reduction of pulse maximum imaging method, relative power loss imaging method, and relative power loss at specific frequency imaging method. The sample's information that reflected by these methods and the characteristics of these methods are discussed. The method base on the mean absorption within a certain frequency is also used to reconstruct sample's image. The experimental results show that this new method can well reflect the true information of the sample. And it can achieve a clearer image than the other traditional THz amplitude imaging methods. All the experimental results and theoretical analyses indicate that the method base on the mean absorption within a certain frequency can reflects sample absorb and thickness information, it can achieve good signal to noise ratio in the images. Because the absorption is mean absorption within in a certain frequency, so the method proposed in this article is especially suitable for samples with simple structure. And this new method can be a useful added tool for the other traditional THz amplitude imaging methods.

4.
Opt Express ; 19(10): 9626-35, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643221

RESUMO

A space-based tempo-spatially modulated polarization atmosphere Michelson interferometer (TSMPAMI) is described. It uses the relative movement between the TSMPAMI and the measured target to change optical path difference. The acquisition method of interferogram is presented. The atmospheric temperatures and horizontal winds can be derived from the optical observations. The measurement errors of the winds and temperatures are discussed through simulations. In the presence of small-scale structures of the atmospheric fields, the errors are found to be significantly influenced by the mismatch of the scenes observed by the adjacent CCD sub-areas aligned along the orbiter's track during successive measurements due to the orbital velocity and the exposure time. For most realistic conditions of the orbit and atmosphere, however, the instrument is proven suitable for measuring the atmospheric parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA