Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Int J Biol Macromol ; 278(Pt 1): 134622, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127267

RESUMO

Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.

2.
Cell Death Dis ; 15(8): 594, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147737

RESUMO

Toll-like receptor (TLR) 4 contributes to be the induction of neuroinflammation by recognizing pathology-associated ligands and activating microglia. In addition, numerous physiological signaling factors act as agonists or antagonists of TLR4 expressed by non-immune cells. Recently, TLR4 was found to be highly expressed in cerebellar Purkinje neurons (PNs) and involved in the maintenance of motor coordination through non-immune pathways, but the precise mechanisms remain unclear. Here we report that mice with PN specific TLR4 deletion (TLR4PKO mice) exhibited motor impairments consistent with cerebellar ataxia, reduced PN dendritic arborization and spine density, fewer parallel fiber (PF) - PN and climbing fiber (CF) - PN synapses, reduced BK channel expression, and impaired BK-mediated after-hyperpolarization, collectively leading to abnormal PN firing. Moreover, the impaired PN firing in TLR4PKO mice could be rescued with BK channel opener. The PNs of TLR4PKO mice also exhibited abnormal mitochondrial structure, disrupted mitochondrial endoplasmic reticulum tethering, and reduced cytosolic calcium, changes that may underly abnormal PN firing and ultimately drive ataxia. These results identify a previously unknown role for TLR4 in regulating PN firing and maintaining cerebellar function.


Assuntos
Cálcio , Ataxia Cerebelar , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos Knockout , Células de Purkinje , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Ataxia Cerebelar/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Cálcio/metabolismo , Camundongos , Homeostase , Citosol/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
3.
Neurology ; 103(4): e209659, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39047204

RESUMO

BACKGROUND AND OBJECTIVES: Accumulating evidence connects diverse components of body composition (e.g., fat, muscle, and bone) to neurodegenerative disease risk, yet their interplay remains underexplored. This study examines the associations between patterns of body composition and the risk of neurodegenerative diseases, exploring the mediating role of cardiovascular diseases (CVDs). METHODS: This retrospective analysis used data from the UK Biobank, a prospective community-based cohort study. We included participants free of neurodegenerative diseases and with requisite body composition measurements at recruitment, who were followed from 5 years after recruitment until April 1, 2023, to identify incident neurodegenerative diseases. We assessed the associations between different components and major patterns of body composition (identified by principal component analysis) with the risk of neurodegenerative diseases, using multivariable Cox models. Analyses were stratified by disease susceptibility, indexed by polygenetic risk scores for Alzheimer and Parkinson diseases, APOE genotype, and family history of neurodegenerative diseases. Furthermore, we performed mediation analysis to estimate the contribution of CVDs to these associations. In addition, in a subcohort of 40,790 participants, we examined the relationship between body composition patterns and brain aging biomarkers (i.e., brain atrophy and cerebral small vessel disease). RESULTS: Among 412,691 participants (mean age 56.0 years, 55.1% female), 8,224 new cases of neurodegenerative diseases were identified over an average follow-up of 9.1 years. Patterns identified as "fat-to-lean mass," "muscle strength," "bone density," and "leg-dominant fat distribution" were associated with a lower rate of neurodegenerative diseases (hazard ratio [HR] = 0.74-0.94) while "central obesity" and "arm-dominant fat distribution" patterns were associated with a higher rate (HR = 1.13-1.18). Stratification analysis yielded comparable risk estimates across different susceptibility groups. Notably, 10.7%-35.3% of the observed associations were mediated by CVDs, particularly cerebrovascular diseases. The subcohort analysis of brain aging biomarkers corroborated the findings for "central obesity," "muscle strength," and "arm-dominant fat distribution" patterns. DISCUSSION: Our analyses demonstrated robust associations of body composition patterns featured by "central obesity," "muscle strength," and "arm-dominant fat distribution" with both neurodegenerative diseases and brain aging, which were partially mediated by CVDs. These findings underscore the potential of improving body composition and early CVD management in mitigating risk of neurodegenerative diseases.


Assuntos
Composição Corporal , Doenças Cardiovasculares , Doenças Neurodegenerativas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Neurodegenerativas/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Biobanco do Reino Unido , Reino Unido/epidemiologia
4.
Int Immunopharmacol ; 138: 112609, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38971103

RESUMO

T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Imunoterapia , Neoplasias , Linfócitos T , Microambiente Tumoral , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia
5.
Front Oncol ; 14: 1432212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040448

RESUMO

Background: Pathomics has emerged as a promising biomarker that could facilitate personalized immunotherapy in lung cancer. It is essential to elucidate the global research trends and emerging prospects in this domain. Methods: The annual distribution, journals, authors, countries, institutions, and keywords of articles published between 2018 and 2023 were visualized and analyzed using CiteSpace and other bibliometric tools. Results: A total of 109 relevant articles or reviews were included, demonstrating an overall upward trend; The terms "deep learning", "tumor microenvironment", "biomarkers", "image analysis", "immunotherapy", and "survival prediction", etc. are hot keywords in this field. Conclusion: In future research endeavors, advanced methodologies involving artificial intelligence and pathomics will be deployed for the digital analysis of tumor tissues and the tumor microenvironment in lung cancer patients, leveraging histopathological tissue sections. Through the integration of comprehensive multi-omics data, this strategy aims to enhance the depth of assessment, characterization, and understanding of the tumor microenvironment, thereby elucidating a broader spectrum of tumor features. Consequently, the development of a multimodal fusion model will ensue, enabling precise evaluation of personalized immunotherapy efficacy and prognosis for lung cancer patients, potentially establishing a pivotal frontier in this domain of investigation.

6.
Cancer Commun (Lond) ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051512

RESUMO

Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.

7.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 324-328, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38953255

RESUMO

Objective To assess the influences of self-and interviewer-administered methods on the scores of anxiety and depression questionnaires among the patients with sports injuries.Methods A total of 532 participants with sports injuries treated in the Sports Medicine Center of West China Hospital,Sichuan University from November 2022 to May 2023 were included.They were randomly assigned to either the interviewer-administered group (n=270) or the self-administered group (n=262) to complete the generalized anxiety disorder (GAD-7) and the patient health questionnaire (PHQ-9) scales.The total scores and prevalence rates of anxiety and depression were compared between the two groups.Results There was no statistically significant difference in gender,occupation,or surgical site between the two groups (all P>0.05).The self-administered group had higher scores of GAD-7 and PHQ-9 scales than the interviewer-administered group (P<0.001,P<0.001).A greater proportion of participants in the self-administered group than in the interview-administered group met the criteria for mild to moderate anxiety and depression (P<0.001,P=0.002).The prevalence rates of moderate to severe anxiety (GAD-7≥10) and depression (PHQ-9≥10) showed no statistically significant difference between the two groups (P=0.761,P=0.086).Conclusion This study demonstrates that the participants in the self-administered group are more likely to report mild to moderate symptoms of anxiety and depression than those in the interviewer-administered group.


Assuntos
Ansiedade , Depressão , Humanos , Inquéritos e Questionários , Depressão/epidemiologia , Depressão/diagnóstico , Feminino , Ansiedade/epidemiologia , Masculino , Adulto , Traumatismos em Atletas/psicologia , Traumatismos em Atletas/epidemiologia , China/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem
8.
J Exp Clin Cancer Res ; 43(1): 173, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898487

RESUMO

BACKGROUND: Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS: High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS: PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS: PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.


Assuntos
Neoplasias da Mama , Imunotoxinas , Receptores da Prolactina , Tamoxifeno , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Receptores da Prolactina/metabolismo , Receptores da Prolactina/genética , Camundongos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Apoptose
10.
Acta Pharmacol Sin ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858494

RESUMO

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.

11.
Bioact Mater ; 39: 191-205, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38808157

RESUMO

Unnecessary exposure to ionizing radiation (IR) often causes acute and chronic oxidative damages to normal cells and organs, leading to serious physiological and even life-threatening consequences. Amifostine (AMF) is a validated radioprotectant extensively applied in radiation and chemotherapy medicine, but the short half-life limits its bioavailability and clinical applications, remaining as a great challenge to be addressed. DNA-assembled nanostructures especially the tetrahedral framework nucleic acids (tFNAs) are promising nanocarriers with preeminent biosafety, low biotoxicity, and high transport efficiency. The tFNAs also have a relative long-term maintenance for structural stability and excellent endocytosis capacity. We therefore synthesized a tFNA-based delivery system of AMF for multi-organ radioprotection (tFNAs@AMF, also termed nanosuit). By establishing the mice models of accidental total body irradiation (TBI) and radiotherapy model of Lewis lung cancer, we demonstrated that the nanosuit could shield normal cells from IR-induced DNA damage by regulating the molecular biomarkers of anti-apoptosis and anti-oxidative stress. In the accidental total body irradiation (TBI) mice model, the nanosuit pretreated mice exhibited satisfactory alteration of superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents, and functional recovery of hematopoietic system, reducing IR-induced pathological damages of multi-organ and safeguarding mice from lethal radiation. More importantly, the nanosuit showed a selective radioprotection of the normal organs without interferences of tumor control in the radiotherapy model of Lewis lung cancer. Based on a conveniently available DNA tetrahedron-based nanocarrier, this work presents a high-efficiency delivery system of AMF with the prolonged half-life and enhanced radioprotection for multi-organs. Such nanosuit pioneers a promising strategy with great clinical translation potential for radioactivity protection.

12.
Cell Rep Med ; 5(5): 101531, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697105

RESUMO

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.


Assuntos
Antígeno B7-H1 , Interleucina-15 , Microambiente Tumoral , Interleucina-15/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Feminino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia
14.
Cutis ; 113(3): E4-E5, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648585

Assuntos
Pescoço , Tórax , Humanos , Face
15.
Acta Pharmacol Sin ; 45(8): 1727-1739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605180

RESUMO

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Imunoconjugados , Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Feminino , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/química , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
16.
Cell Mol Life Sci ; 81(1): 182, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615283

RESUMO

BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Neurais , Animais , Camundongos , Estudos Prospectivos , Diferenciação Celular/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Apoptose/genética , Proliferação de Células/genética
17.
Clin Cosmet Investig Dermatol ; 17: 843-846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628635

RESUMO

Pityriasis rosea (PR) is a common inflammatory, erythematous and scaly skin condition that usually affects individuals aged from 20 to 40 years old. The disease often exhibits a self-limiting course up to 6-8 weeks. We report a 25-year-old female patient with a six-month history of red scaly rashes on the trunk and proximal limbs, accompanied by severe pruritus that has been remained ineffective conventional treatments. She was diagnosed as persistent pityriasis rosea. As abrocitinib has been proved to be effective for many inflammatory diseases, therefore in this case, we tried abrocitinib for the patient, and a good result had been achieved.

18.
Biomed Pharmacother ; 174: 116565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603888

RESUMO

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Assuntos
Anticorpos Biespecíficos , Molécula L1 de Adesão de Célula Nervosa , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int Immunopharmacol ; 132: 111944, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581990

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.


Assuntos
Antígeno B7-H1 , Carcinoma Ductal Pancreático , Quimiocina CXCL12 , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Receptores CXCR4 , Anticorpos de Domínio Único , Microambiente Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Animais , Quimiocina CXCL12/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia , Transdução de Sinais , Camundongos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Progressão da Doença
20.
Inflammopharmacology ; 32(2): 1633-1646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451396

RESUMO

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Animais , Ratos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA