Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
JCO Precis Oncol ; 6: e2100280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294224

RESUMO

PURPOSE: Patients with metastatic triple-negative breast cancer (mTNBC) have poor outcomes. The Intensive Trial of Omics in Cancer (ITOMIC) sought to determine the feasibility and potential efficacy of informing treatment decisions through multiple biopsies of mTNBC deposits longitudinally over time, accompanied by analysis using a distributed network of experts. METHODS: Thirty-one subjects were enrolled and 432 postenrollment biopsies performed (clinical and study-directed) of which 332 were study-directed. Molecular profiling included whole-genome sequencing or whole-exome sequencing, cancer-associated gene panel sequencing, RNA-sequencing, and immunohistochemistry. To afford time for analysis, subjects were initially treated with cisplatin (19 subjects), or another treatment they had not received previously. The results were discussed at a multi-institutional ITOMIC Tumor Board, and a report transmitted to the subject's oncologist who arrived at the final treatment decision in conjunction with the subject. Assistance was provided to access treatments that were predicted to be effective. RESULTS: Multiple biopsies in single settings and over time were safe, and comprehensive analysis was feasible. Two subjects were found to have lung cancer, one had carcinoma of unknown primary site, tumor samples from three subjects were estrogen receptor-positive and from two others, human epidermal growth factor receptor 2-positive. Two subjects withdrew. Thirty-four of 112 recommended treatments were accessed using approved drugs, clinical trials, and single-patient investigational new drugs. After excluding the three subjects with nonbreast cancers and the two subjects who withdrew, 22 of 26 subjects (84.6%) received at least one ITOMIC Tumor Board-recommended treatment. CONCLUSION: Further exploration of this approach in patients with mTNBC is merited.


Assuntos
Neoplasias de Mama Triplo Negativas , Cisplatino/uso terapêutico , Estudos de Viabilidade , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Nat Commun ; 11(1): 3400, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636365

RESUMO

The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we provide a user's guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout. We detail use cases and analyses for each tool, show how they incorporate outside resources from the larger genomics ecosystem, and demonstrate how the tools can be used together to understand the biology of cancers more deeply. Together, the tools enable researchers to query the complex genomic PCAWG data dynamically and integrate external information, enabling and enhancing interpretation.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Neoplasias/genética , Cromotripsia , Análise de Dados , Bases de Dados Genéticas , Genômica , Humanos , Internet , Mutação , Software , Interface Usuário-Computador , Sequenciamento Completo do Genoma
4.
JAMA Netw Open ; 2(10): e1913968, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651965

RESUMO

Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes. Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer. Design, Setting, and Participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical sites and analyzed at UCSC: British Columbia Children's Hospital (n = 31), Lucile Packard Children's Hospital at Stanford University (n = 80), CHOC Children's Hospital and Hyundai Cancer Institute (n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were January 1, 2016, to March 22, 2017. Exposures: Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution. The UCSC then compared each participant's tumor RNA-Seq profile with more than 11 000 uniformly analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from public data repositories. These comparisons were used to identify genes and pathways that are significantly overexpressed in each patient's tumor. Results of the UCSC analysis were presented to clinical partners. Main Outcomes and Measures: Feasibility of a third-party institution (UCSC Treehouse Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative analysis, and present analysis results to clinicians; and proportion of patients for whom comparative tumor gene expression analysis provided useful clinical and biological information. Results: Among 144 samples from children and young adults (median age at diagnosis, 9 years; range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or rare cancer treated on precision medicine protocols, RNA-Seq-derived gene expression was potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was potentially useful for only 34 of 74 samples (45.9%). Conclusions and Relevance: This study's findings suggest that tumor RNA-Seq comparisons may be feasible and highlight the potential clinical utility of incorporating such comparisons into the clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients with cancer. The study also highlights for the first time to date the potential clinical utility of harmonized publicly available genomic data sets.


Assuntos
Neoplasias/genética , RNA Neoplásico/análise , Análise de Sequência de RNA , Canadá , Criança , Pré-Escolar , Feminino , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Medicina de Precisão , Estados Unidos , Adulto Jovem
5.
Talanta ; 183: 237-244, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567170

RESUMO

An ultrasensitive photoelectrochemical (PEC) aptasensor for lead ion (Pb2+) detection was fabricated based on MoS2-CdS:Mn nanocomposites and sensitization effect of CdTe quantum dots (QDs). MoS2-CdS:Mn modified electrode was used as the PEC matrix for the immobilization of probe DNA (pDNA) labeled with CdTe QDs. Target DNA (tDNA) were hybridized with pDNA to made the QDs locate away from the electrode surface by the rod-like double helix. The detection of Pb2+ was based on the conformational change of the pDNA to G-quadruplex structure in the presence of Pb2+, which made the labeled QDs move close to the electrode surface, leading to the generation of sensitization effect and evident increase of the photocurrent intensity. The linear range was 50 fM to 100 nM with a detection limit of 16.7 fM. The recoveries of the determination of Pb2+ in real samples were in the range of 102.5-108.0%. This proposed PEC aptasensor provides a new sensing strategy for various heavy metal ions at ultralow levels.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Quadruplex G , Chumbo/análise , Pontos Quânticos/química , Compostos de Cádmio/química , Dissulfetos/química , Íons/análise , Manganês/química , Molibdênio/química , Nanocompostos/química , Tamanho da Partícula , Processos Fotoquímicos , Sulfetos/química , Propriedades de Superfície , Telúrio/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-31372595

RESUMO

Clinical detection of sequence and structural variants in known cancer genes points to viable treatment options for a minority of children with cancer.1 To increase the number of children who benefit from genomic profiling, gene expression information must be considered alongside mutations.2,3 Although high expression has been used to nominate drug targets for pediatric cancers,4,5 its utility has not been evaluated in a systematic way.6 We describe a child with a rare sarcoma that was profiled with whole-genome and RNA sequencing (RNA-Seq) techniques. Although the tumor did not harbor DNA mutations targetable by available therapies, incorporation of gene expression information derived from RNA-Seq analysis led to a therapy that produced a significant clinical response. We use this case to describe a framework for inclusion of gene expression into the clinical genomic evaluation of pediatric tumors.

8.
J Natl Compr Canc Netw ; 14(1): 8-17, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733551

RESUMO

Accelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient's evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient. Whole-exome sequencing of 3 bone marrow samples demonstrated a novel ROS1 variant that was estimated to be present in most or all tumor cells. After an initial response to cisplatin, a hypothesis of crizotinib sensitivity was disproven. Leukapheresis followed by partial CTC enrichment allowed for the development of a differential high-throughput drug screen and demonstrated sensitivity to investigational BH3-mimetic inhibitors of BCL-2 that could not be tested in the patient because requests to the pharmaceutical sponsors were denied. The number and size of CTC clusters correlated with clinical status and eventually death. Focusing the expertise of a distributed network of investigators on an intensively monitored patient with cancer can generate high-resolution views of the natural history of cancer and suggest new opportunities for therapy. Optimization requires access to investigational drugs.


Assuntos
Redes Comunitárias , Pesquisadores , Neoplasias de Mama Triplo Negativas/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/secundário , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Prova Pericial , Feminino , Seguimentos , Humanos , Leucaférese , Estudos Longitudinais , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
9.
Nucleic Acids Res ; 43(Database issue): D812-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392408

RESUMO

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a web-based application that integrates relevant data, analysis and visualization, allowing users to easily discover and share their research observations. Users can explore the relationship between genomic alterations and phenotypes by visualizing various -omic data alongside clinical and phenotypic features, such as age, subtype classifications and genomic biomarkers. The Cancer Genomics Browser currently hosts 575 public datasets from genome-wide analyses of over 227,000 samples, including datasets from TCGA, CCLE, Connectivity Map and TARGET. Users can download and upload clinical data, generate Kaplan-Meier plots dynamically, export data directly to Galaxy for analysis, plus generate URL bookmarks of specific views of the data to share with others.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , Linhagem Celular Tumoral , Criança , Genômica , Humanos , Internet , Estimativa de Kaplan-Meier , Neoplasias/diagnóstico , Neoplasias/mortalidade , Fenótipo
10.
PLoS One ; 9(11): e111516, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405470

RESUMO

The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.


Assuntos
Adenocarcinoma/genética , Neoplasias do Endométrio/genética , Neoplasias Pulmonares/genética , Mutação , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Software , Feminino , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade
11.
Mol Cell Proteomics ; 13(7): 1625-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777629

RESUMO

Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology.


Assuntos
Imunoensaio/métodos , Análise Serial de Proteínas/métodos , Pesquisa Translacional Biomédica/métodos , Educação , Humanos , Processamento de Proteína Pós-Traducional
12.
Sci Rep ; 3: 2652, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24084870

RESUMO

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) offers interactive visualization and exploration of TCGA genomic, phenotypic, and clinical data, as produced by the Cancer Genome Atlas Research Network. Researchers can explore the impact of genomic alterations on phenotypes by visualizing gene and protein expression, copy number, DNA methylation, somatic mutation and pathway inference data alongside clinical features, Pan-Cancer subtype classifications and genomic biomarkers. Integrated Kaplan-Meier survival analysis helps investigators to assess survival stratification by any of the information.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Neoplasias/genética , Navegador , Animais , Humanos , Neoplasias/metabolismo
13.
Nucleic Acids Res ; 41(Database issue): D949-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23109555

RESUMO

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a set of web-based tools to display, investigate and analyse cancer genomics data and its associated clinical information. The browser provides whole-genome to base-pair level views of several different types of genomics data, including some next-generation sequencing platforms. The ability to view multiple datasets together allows users to make comparisons across different data and cancer types. Biological pathways, collections of genes, genomic or clinical information can be used to sort, aggregate and zoom into a group of samples. We currently display an expanding set of data from various sources, including 201 datasets from 22 TCGA (The Cancer Genome Atlas) cancers as well as data from Cancer Cell Line Encyclopedia and Stand Up To Cancer. New features include a completely redesigned user interface with an interactive tutorial and updated documentation. We have also added data downloads, additional clinical heatmap features, and an updated Tumor Image Browser based on Google Maps. New security features allow authenticated users access to private datasets hosted by several different consortia through the public website.


Assuntos
Bases de Dados Genéticas , Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Humanos , Internet
14.
Genome Res ; 22(5): 837-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22391556

RESUMO

Many DNA-hypermethylated cancer genes are occupied by the Polycomb (PcG) repressor complex in embryonic stem cells (ESCs). Their prevalence in the full spectrum of cancers, the exact context of chromatin involved, and their status in adult cell renewal systems are unknown. Using a genome-wide analysis, we demonstrate that ~75% of hypermethylated genes are marked by PcG in the context of bivalent chromatin in both ESCs and adult stem/progenitor cells. A large number of these genes are key developmental regulators, and a subset, which we call the "DNA hypermethylation module," comprises a portion of the PcG target genes that are down-regulated in cancer. Genes with bivalent chromatin have a low, poised gene transcription state that has been shown to maintain stemness and self-renewal in normal stem cells. However, when DNA-hypermethylated in tumors, we find that these genes are further repressed. We also show that the methylation status of these genes can cluster important subtypes of colon and breast cancers. By evaluating the subsets of genes that are methylated in different cancers with consideration of their chromatin status in ESCs, we provide evidence that DNA hypermethylation preferentially targets the subset of PcG genes that are developmental regulators, and this may contribute to the stem-like state of cancer. Additionally, the capacity for global methylation profiling to cluster tumors by phenotype may have important implications for further refining tumor behavior patterns that may ultimately aid therapeutic interventions.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Neoplasias/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Análise por Conglomerados , Ilhas de CpG , Epigênese Genética , Perfilação da Expressão Gênica , Genes Neoplásicos , Genes Reguladores , Histonas/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA
15.
EMBO J ; 31(2): 330-50, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22085927

RESUMO

Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.


Assuntos
Elementos Isolantes/genética , RNA de Transferência/genética , Animais , Linhagem Celular , Cromatina/genética , Cromossomos Humanos Par 17/genética , Biologia Computacional/métodos , DNA Fúngico/genética , DNA Fúngico/metabolismo , Elementos Facilitadores Genéticos/genética , Inativação Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Mamíferos/genética , Ligação Proteica , RNA Polimerase III/metabolismo , Schizosaccharomyces/genética , Alinhamento de Sequência , Sintenia , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica/genética , Transgenes
17.
Nucleic Acids Res ; 39(Database issue): D951-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21059681

RESUMO

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) comprises a suite of web-based tools to integrate, visualize and analyze cancer genomics and clinical data. The browser displays whole-genome views of genome-wide experimental measurements for multiple samples alongside their associated clinical information. Multiple data sets can be viewed simultaneously as coordinated 'heatmap tracks' to compare across studies or different data modalities. Users can order, filter, aggregate, classify and display data interactively based on any given feature set including clinical features, annotated biological pathways and user-contributed collections of genes. Integrated standard statistical tools provide dynamic quantitative analysis within all available data sets. The browser hosts a growing body of publicly available cancer genomics data from a variety of cancer types, including data generated from the Cancer Genome Atlas project. Multiple consortiums use the browser on confidential prepublication data enabled by private installations. Many new features have been added, including the hgMicroscope tumor image viewer, hgSignature for real-time genomic signature evaluation on any browser track, and 'PARADIGM' pathway tracks to display integrative pathway activities. The browser is integrated with the UCSC Genome Browser; thus inheriting and integrating the Genome Browser's rich set of human biology and genetics data that enhances the interpretability of the cancer genomics data.


Assuntos
Bases de Dados Genéticas , Genômica , Neoplasias/genética , Variações do Número de Cópias de DNA , Expressão Gênica , Genoma Humano , Humanos , Internet , Neoplasias/metabolismo , Neoplasias/patologia , Software
18.
Bioinformatics ; 26(12): i237-45, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20529912

RESUMO

MOTIVATION: High-throughput data is providing a comprehensive view of the molecular changes in cancer tissues. New technologies allow for the simultaneous genome-wide assay of the state of genome copy number variation, gene expression, DNA methylation and epigenetics of tumor samples and cancer cell lines. Analyses of current data sets find that genetic alterations between patients can differ but often involve common pathways. It is therefore critical to identify relevant pathways involved in cancer progression and detect how they are altered in different patients. RESULTS: We present a novel method for inferring patient-specific genetic activities incorporating curated pathway interactions among genes. A gene is modeled by a factor graph as a set of interconnected variables encoding the expression and known activity of a gene and its products, allowing the incorporation of many types of omic data as evidence. The method predicts the degree to which a pathway's activities (e.g. internal gene states, interactions or high-level 'outputs') are altered in the patient using probabilistic inference. Compared with a competing pathway activity inference approach called SPIA, our method identifies altered activities in cancer-related pathways with fewer false-positives in both a glioblastoma multiform (GBM) and a breast cancer dataset. PARADIGM identified consistent pathway-level activities for subsets of the GBM patients that are overlooked when genes are considered in isolation. Further, grouping GBM patients based on their significant pathway perturbations divides them into clinically-relevant subgroups having significantly different survival outcomes. These findings suggest that therapeutics might be chosen that target genes at critical points in the commonly perturbed pathway(s) of a group of patients. AVAILABILITY: Source code available at http://sbenz.github.com/Paradigm,. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica/métodos , Neoplasias/genética , Software , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Humanos
20.
PLoS Comput Biol ; 3(12): e247, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18085818

RESUMO

Taking advantage of the complete genome sequences of several mammals, we developed a novel method to detect losses of well-established genes in the human genome through syntenic mapping of gene structures between the human, mouse, and dog genomes. Unlike most previous genomic methods for pseudogene identification, this analysis is able to differentiate losses of well-established genes from pseudogenes formed shortly after segmental duplication or generated via retrotransposition. Therefore, it enables us to find genes that were inactivated long after their birth, which were likely to have evolved nonredundant biological functions before being inactivated. The method was used to look for gene losses along the human lineage during the approximately 75 million years (My) since the common ancestor of primates and rodents (the euarchontoglire crown group). We identified 26 losses of well-established genes in the human genome that were all lost at least 50 My after their birth. Many of them were previously characterized pseudogenes in the human genome, such as GULO and UOX. Our methodology is highly effective at identifying losses of single-copy genes of ancient origin, allowing us to find a few well-known pseudogenes in the human genome missed by previous high-throughput genome-wide studies. In addition to confirming previously known gene losses, we identified 16 previously uncharacterized human pseudogenes that are definitive losses of long-established genes. Among them is ACYL3, an ancient enzyme present in archaea, bacteria, and eukaryotes, but lost approximately 6 to 8 Mya in the ancestor of humans and chimps. Although losses of well-established genes do not equate to adaptive gene losses, they are a useful proxy to use when searching for such genetic changes. This is especially true for adaptive losses that occurred more than 250,000 years ago, since any genetic evidence of the selective sweep indicative of such an event has been erased.


Assuntos
Evolução Biológica , Mapeamento Cromossômico/métodos , Análise Mutacional de DNA/métodos , Evolução Molecular , Deleção de Genes , Genoma Humano/genética , Pseudogenes/genética , Animais , Cães , Variação Genética/genética , Genômica/métodos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA