Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2401939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39259834

RESUMO

Early life stress alters gut microbiota and increases the risk of neuropsychiatric disorders, including social deficits and anxiety, in the host. However, the role of gut commensal bacteria in early life stress-induced neurobehavioral abnormalities remains unclear. Using the maternally separated (MS) mice, our research has unveiled a novel aspect of this complex relationship. We discovered that the reduced levels of amino acid transporters in the intestine of MS mice led to low glutamine (Gln) levels in the blood and synaptic dysfunction in the medial prefrontal cortex (mPFC). Abnormally low blood Gln levels limit the brain's availability of Gln, which is required for presynaptic glutamate (Glu) and γ-aminobutyric acid (GABA) replenishment. Furthermore, MS resulted in gut microbiota dysbiosis characterized by a reduction in the relative abundance of Lactobacillus reuteri (L. reuteri). Notably, supplementation with L. reuteri ameliorates neurobehavioral abnormalities in MS mice by increasing intestinal amino acid transport and restoring synaptic transmission in the mPFC. In conclusion, our findings on the role of L. reuteri in regulating intestinal amino acid transport and buffering early life stress-induced behavioral abnormalities provide a novel insight into the microbiota-gut-brain signaling basis for emotional behaviors.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Estresse Psicológico , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Ansiedade/microbiologia , Ansiedade/metabolismo , Estresse Psicológico/microbiologia , Estresse Psicológico/metabolismo , Aminoácidos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistemas de Transporte de Aminoácidos/metabolismo , Córtex Pré-Frontal/metabolismo , Comportamento Animal , Disbiose/microbiologia , Privação Materna , Glutamina/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Transmissão Sináptica , Feminino , Ácido Glutâmico/metabolismo
2.
Neuropharmacology ; 240: 109715, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716533

RESUMO

Maternal immune activation (MIA) resulting from viral infections during pregnancy is linked to increased rates of neurodevelopmental disorders in offspring. However, the mechanisms underlying MIA-induced neurobehavioral abnormalities remain unclear. Here, we used a poly (I:C)-induced MIA mouse model to demonstrate the presence of multiple behavioral deficits in male offspring. Through RNA sequencing (RNA-seq), we identified significant upregulation of genes involved in axonogenesis, synaptogenesis, and glutamatergic synaptic neurotransmission in the mPFC of MIA mice. Electrophysiological analyses further revealed an excitatory-inhibitory (E/I) synaptic imbalance in mPFC pyramidal neurons, leading to hyperactivity in this brain region. Cannabidiol (CBD) effectively alleviated the behavioral abnormalities observed in MIA offspring by reducing glutamatergic transmission and enhancing GABAergic neurotransmission of mPFC pyramidal neurons. Activation of GPR55 by lipid lysophosphatidylinositol (LPI), an endogenous GPR55 agonist, specifically in the mPFC of healthy animals led to MIA-associated behavioral phenotypes, which CBD could effectively reverse. Moreover, we found that a GPR55 antagonist can mimic CBD's beneficial effects, indicating that CBD's therapeutic effects are mediated via the LPI-GPR55 signaling pathway. Therefore, we identified mPFC as a primary node of a neural network that mediates MIA-induced behavioral abnormalities in offspring. Our work provides insights into the mechanisms underlying the developmental consequences of MIA and identifies CBD as a promising therapeutic approach to alleviate these effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA