Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Angew Chem Int Ed Engl ; : e202402827, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602019

RESUMO

Lithium-ion batteries have found extensive applications due to their high energy density and low self-discharge rates, spanning from compact consumer electronics to large-scale energy storage facilities. Despite their widespread use, challenges such as inherent capacity degradation and the potential for thermal runaway hinder sustainable development. In this study, we introduce a unique approach to synthesize anode materials for lithium-ion batteries, specifically imidazole-intercalated cobalt hydroxide. This innovative material significantly enhances the Li+ desolvation/diffusion reaction and flame-retardant dynamics through complexing and catalytic synergetic effects. The lithium-ion batteries incorporating these materials demonstrate exceptional performance, boasting an impressive capacity retention of 997.91 mAh g-1 after 500 cycles. This achievement can be attributed to the optimization of the solid electrolyte interphase (SEI) interface engineering, effectively mitigating anode degradation and minimizing electrolyte consumption. Experimental and theoretical calculations validate these improvements. Importantly, imidazole intercalated Co(OH)2 (MI-Co(OH)2) exhibits a remarkable catalytic effect on electrolyte carbonization and the conversion of CO to CO2. This dual action suppresses smoke and reduces toxicity significantly. The presented work introduces a novel approach to realizing high-performance and safe lithium-ion batteries, addressing key challenges in the pursuit of sustainable energy solutions.

2.
Small ; : e2312083, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644686

RESUMO

Due to the ubiquitous and inexhaustible solar source, photothermal materials have gained considerable attention for their potential in heating and de-icing. Nevertheless, traditional photothermal materials, exemplified by graphene, frequently encounter challenges emanating from their elevated reflectance. Inspired by ocular structures, this study uses the Fresnel equation to enhance the photo-thermal conversion efficiency of graphene by introducing a polydimethylsiloxane (PDMS)/silicon dioxide (SiO2) coating, which reduces the light reflectance (≈20%) through destructive interference. The designed coating achieves an equilibrium temperature of ≈77 °C at one sun and a quick de-icing in ≈65 s, all with a thickness of 5 µm. Simulations demonstrate that applying this coating to high-rise buildings results in energy savings of ≈31% in winter heating. Furthermore, the combination of PDMS/SiO2 and graphene confers a notable enhancement in thermal stability through a synergistic flame-retardant mechanism, effectively safeguarding polyurethane against high temperatures and conflagrations, leading to marked reduction of 58% and 28% in heat release rate and total heat release. This innovative design enhances the photo-thermal conversion, de-icing function, and flame retardancy of graphene, thereby advancing its applications in outdoor equipment, high-rise buildings, and aerospace vessels.

3.
Proc Natl Acad Sci U S A ; 121(11): e2317440121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437532

RESUMO

Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.

4.
Small ; : e2401249, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482948

RESUMO

Zn metal anodes in aqueous electrolytes suffer from interface issues including uncontrolled dendrite growth and undesired side reactions, resulting in their limited application in terms of short circuits and cell failure. Herein, a hybrid interface chemistry strategy is developed through ultrafast microwave polarization at the skin region of bare Zn. Owing to efficient Joule heating directed by abundant local hot spots at electron valleys, the rapid establishment of a dense interfacial layer can be realized within a minute. Stabilized Zn with suppressed side reactions or surface corrosion is therefore achieved due to the interfacial protection. Importantly, hybrid zincophilic sites involving laterally/vertically interconnected Cu-Zn intermetallic compound and Zn2+ -conductive oxide species ensure mixed charge conducting (denoted as CuHL@Zn), featuring uniformly distributed electric field and boosted Zn2+ diffusion kinetics. As a consequence, CuHL@Zn in symmetric cells affords lifespans of 2800 and 3200 h with ultra-low polarization voltages (≈19 and 56 mV) at a plating capacity of 1.0 mAh cm-2 for 1 and 5 mA cm-2 , respectively. The CuHL@Zn||MnO2 full cell further exhibits cycling stability with a capacity retention of over 80% for 500 cycles at 2 A g-1 .

5.
Nano Lett ; 24(7): 2315-2321, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341875

RESUMO

Commercial batteries have been largely applied in mobile electronics, electric vehicles, and scalable energy storage systems. However, thermal runaway of batteries still obstructs the reliability of electric equipment. Considering this, building upon recent investigations of energy thermal safety, commercially available organogel fiber-based implantable sensors have been developed through 3D printing technology for first operando implantable monitoring of cell temperature. The printed fibers present excellent reliability and superelasticity because of internal supramolecular cross-linking. High temperature sensitivity (-39.84% °C-1/-1.557% °C-1) within a wide range (-15 to 80 °C) is achieved, and the corresponding mechanism is clarified based on in situ temperature-dependent Raman technology. Furthermore, taking the pouch cell as an example, combined with finite element analysis, the real-time observation system of cell temperature is successfully demonstrated through an implanted sensor with wireless Bluetooth transmission. This enlightening approach paves the way for achieving safety monitoring and smart warnings for various electric equipment.

6.
Adv Mater ; 36(18): e2310613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38291859

RESUMO

Flexible temperature sensors capable of detecting and transmitting temperature data from the human body, environment, and electronic devices hold significant potential for applications in electronic skins, human-machine interactions, and disaster prevention systems. Nonetheless, fabricating flexible temperature sensors with exceptional sensing performance remains a formidable task, primarily due to the intricate process of constructing an intrinsically flexible sensing element with high sensitivity. In this study, a facile in situ two-step synthetic method is introduced for fabricating flexible fiber-shaped NiO/carbon nanotube fiber (CNTF) composites. The resulting NiO/CNTF flexible temperature sensors demonstrate outstanding deformability and temperature sensing characteristics, encompassing a broad working range (-15 to 60 °C) and high sensitivity (maximum TCR of -20.2% °C-1 and B value of 3332 K). Importantly, the mechanical and thermal behaviors of the sensor in various application conditions are thoroughly examined using finite element analysis simulations. Moreover, the temperature sensors can effectively capture diverse thermal signals in wearable applications. Notably, a temperature monitoring and warning system is developed to prevent fire accidents resulting from abnormal thermal runaway in electronic devices.

7.
Small ; 20(2): e2305217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661581

RESUMO

Graphene-based materials (GBMs) possess a unique set of properties including tunable interlayer channels, high specific surface area, and good electrical conductivity characteristics, making it a promising material of choice for making electrode in rechargeable batteries. Lithium-ion batteries (LIBs) currently dominate the commercial rechargeable battery market, but their further development has been hampered by limited lithium resources, high lithium costs, and organic electrolyte safety concerns. From the performance, safety, and cost aspects, zinc-based rechargeable batteries have become a promising alternative of rechargeable batteries. This review highlights recent advancements and development of a variety of graphene derivative-based materials and its composites, with a focus on their potential applications in rechargeable batteries such as LIBs, zinc-air batteries (ZABs), zinc-ion batteries (ZIBs), and zinc-iodine batteries (Zn-I2 Bs). Finally, there is an outlook on the challenges and future directions of this great potential research field.

8.
ACS Appl Mater Interfaces ; 15(2): 3131-3140, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603144

RESUMO

Flexible sensors have attracted increasing attention owing to their important applications in human activity monitoring, medical diagnosis, and human-machine interaction. However, the rational design of low-cost sensors with desirable properties (e.g., high sensitivity and excellent stability) and extended applications is still a great challenge. Herein, a simple and cost-effective strategy is reported by immersing polyurethane (PU) sponge in graphene oxide solution followed by in situ chemical reduction to construct a reduced graphene oxide (RGO)-wrapped PU sponge sensor. Ascribed to the excellent compressive resilience of PU sponge and an electrically conductive RGO layer, the constructed flexible sensor exhibits satisfactory sensing performance with high sensitivity (17.65 kPa-1) in a low-load range (0-3.2 kPa), a wide compression strain range (0-80%), and reliable stability (8000 cycles). In addition, these sensors can be successfully applied to monitor human movements and identify the weight of objects. Through the use of a sensor array integrated with a signal acquisition circuit, the reasonably designed sensors can realize tactile feedback via mapping real-time spatial distribution of pressure in complicated tasks and show potential applications in flexible electronic pianos, electronic skin, and remote real-time control of home electronics.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Grafite/química , Movimento , Poliuretanos/química
9.
Small ; 19(11): e2206338, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36539266

RESUMO

Flexible aqueous zinc batteries are promising candidates as safe power sources for fast-growing portable and wearable electronics. However, the low working voltage, poor rate capability, and cycling stability have greatly restricted their development and applications. Here, a new family of flexible bimetallic phosphide/carbon nanotube hybrid fiber electrodes with unique macroscopic microcrack structure and microscopic porous nanoflower structure is reported. The hierarchical microcrack structure not only facilitates the penetration of electrolyte for effective exposure of active sites, but also can serve as buffers to relieve the stress concentrations of the fiber electrode under deformations, enabling impressive electrochemical performance and mechanical flexibility. Particularly, the fabricated flexible aqueous zinc batteries demonstrate high working voltage plateau and specific capacity (≈1.7 V, 258.9 mAh g-1 at 2 A g-1 ), ultrahigh rate capability (135.8 mAh g-1 at 50 A g-1 , fully charged in only 9.8 s) and impressive power density of 79 000 W kg-1 . Moreover, the flexible batteries show ultralong cycling life with 74.6% capacity retention after 20 000 cycles. The fiber batteries are also highly flexible and can be easily knitted into soft electronic textiles to power a smartphone, which are particularly promising for the next-generation of flexible and wearable electronics.

10.
Adv Mater ; 35(5): e2205206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453716

RESUMO

Aqueous rechargeable zinc ion batteries are promising efficient energy storage systems due to remarkable safety and satisfactory capacity. However, zinc metal anode instability including dendrite growth and side reactions severely hinders widespread applications. Herein, zincophilic microbrushes have been in situ anchored on zinc plates through simple freeze-drying and mild reduction of graphene oxide, successfully overcoming these thorny issues. By introducing suitable oxygen-containing groups, the microbrushes exhibit a good affinity for zinc ions, thereby providing sufficient depositing sites, promoting zinc plating and stripping during cycling, and suppressing side reactions. The delicate zincophilic microbrushes can not only function as protective layer to guide the deposition of zinc ions, but also act as high-speed pathways to redistribute the zinc ion flux for rapid kinetics. Consequently, the microbrushes-covered zinc anode displays long lifespan and good durability, whenever in symmetric cell or full battery tests. This work paves a feasible bridge to design advanced aqueous anodes by architecting both structures and compositions of metal coverings.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35822804

RESUMO

Lithium (Li) metal is one of the most promising anode materials for the next-generation batteries, which owns superior specific capacity and energy density. Unfortunately, lithium dendrites that is formed during the charging/discharging process tends to induce capacity degradation and thus short lifespan. In this study, the vanadium oxide (V2O5) and nitrogen-doped vanadium oxide (N-V2O3, N-VO0.9)-modified three-dimensional (3D) reduced graphene oxide ((N)-VOx@rGO) with tunable electronic properties are demonstrated to enable the dendrite-free Li deposition. The soft lithiophilic rGO as the scaffold can provide sufficient void space for Li storage. Meanwhile, the rigid (N)-VOx uniformly anchored on rGO can perfectly maintain the 3D structure, which is crucial for Li to enter the inner space of the 3D framework. Consequently, the (N)-VOx@rGO electrodes achieve dendrite-free electrodeposition under the multifarious deposition capacity and current densities. Compared with the bare lithium electrodes, the asymmetrical cells of (N)-VOx@rGO anode can cycle stably up to 400 h at 2 mA cm-2 current density, together with a low nucleation overpotential of ∼20 mV.

12.
Nat Commun ; 13(1): 3420, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701412

RESUMO

Hydrogels are investigated broadly in flexible sensors which have been applied into wearable electronics. However, further application of hydrogels is restricted by the ambiguity of the sensing mechanisms, and the multi-functionalization of flexible sensing systems based on hydrogels in terms of cost, difficulty in integration, and device fabrication remains a challenge, obstructing the specific application scenarios. Herein, cost-effective, structure-specialized and scenario-applicable 3D printing of direct ink writing (DIW) technology fabricated two-dimensional (2D) transition metal carbides (MXenes) bonded hydrogel sensor with excellent strain and temperature sensing performance is developed. Gauge factor (GF) of 5.7 (0 - 191% strain) and high temperature sensitivity (-5.27% °C-1) within wide working range (0 - 80 °C) can be achieved. In particular, the corresponding mechanisms are clarified based on finite element analysis and the first use of in situ temperature-dependent Raman technology for hydrogels, and the printed sensor can realize precise temperature indication of shape memory solar array hinge.

13.
Natl Sci Rev ; 9(6): nwac079, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35673533

RESUMO

The effects of nanoconfined water and the charge storage mechanism are crucial to achieving the ultrahigh electrochemical performance of two-dimensional transition metal carbides (MXenes). We propose a facile method to manipulate nanoconfined water through surface chemistry modification. By introducing oxygen and nitrogen surface groups, more active sites were created for Ti3C2 MXene, and the interlayer spacing was significantly increased by accommodating three-layer nanoconfined water. Exceptionally high capacitance of 550 F g-1 (2000 F cm-3) was obtained with outstanding high-rate performance. The atomic scale elucidation of the layer-dependent properties of nanoconfined water and pseudocapacitive charge storage was deeply probed through a combination of 'computational and experimental microscopy'. We believe that an understanding of, and a manipulation strategy for, nanoconfined water will shed light on ways to improve the electrochemical performance of MXene and other two-dimensional materials.

14.
ACS Appl Mater Interfaces ; 14(22): 25753-25762, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621731

RESUMO

Flexible strain-sensitive sensors have been receiving intensive attention in many aspects ranging from human motion capture to health-related signal monitoring. However, the fabric strain sensor with multi-directional sensing capability, besides having a wide strain range and high response sensitivity, is still very challenging and deserves further exploration. Here, we have prepared a wearable cotton fabric strain sensor uniformly decorated with single-walled carbon nanotubes through a facile solution process. The unique hierarchical architecture of the cotton fabric woven from twisted yarns combined with the conductive carbon nanotube network endows the fabric strain sensors with attractive performance, including low detection limit, large workable strain range, fascinating stability and durability, excellent direction-dependent strain response, and good air permeability. The strain sensor without polymer encapsulation can not only monitor subtle and large multi-directional motions but also fit well to the human body with satisfactory comfort, demonstrating its potential application in wearable electronics and intelligent clothing.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Movimento (Física) , Têxteis
15.
Chemistry ; 28(40): e202200789, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35522478

RESUMO

Realizing the synergy between active site regulation and rational structural engineering is essential in the electrocatalysis community but still challenging. Here, a matrix-confined co-pyrolysis strategy based on molecular bridging is demonstrated to realize highly dispersed Fe atoms on stereoassembled carbon framework. Both polyacrylonitrile matrix and organic linker from metal-organic frameworks (MOFs) provide sufficient N-anchoring sites for the generation of Fe-N4 moieties. A high Fe loading of 2.9 wt.% is readily achieved based on the scalable approach without post-treatment. Owing to the presence of highly exposed Fe-N-C sites and well-tuned pore structures, isolated Fe atoms on porous carbon nanofiber framework (Fe-SA/NCF) exhibits decent oxygen reduction activity and stability in alkaline conditions via a near four-electron path, demonstrating superior performance as air cathode for zinc-air batteries (ZABs) to commercial Pt/C catalyst.

16.
Small Methods ; 6(1): e2101212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041277

RESUMO

Two-dimensional metal-organic complex (MOC) nanosheets are of great interest in various areas. Current strategies applied to synthesize MOC nanosheets are suffering from low yield, usage of large amounts of environmentally unfriendly organic solvent, are time and energy consuming, and cumbersome steps for 2D nanostructures. In this work, a novel joule heating mechanism is proposed to fabricate MOC nanosheets about 5 nm in thickness with tunable metal compositions (i.e. M = Co, CoNi, and CoFe) within 60 s. Small amount of water is used as the only solvent. Under the intense irradiation of the microwave, fast heating via ionic conduction loss is realized, and urea is catalytically condensed into the long-chain organic ligands rich in N atoms that are capable of coordinating with metal ions to form the stubborn MOC framework, which is simultaneously puffed into an ultrathin nanosheet structure by the intensive release of gas. As a proof of concept, the as-synthesized Co-MOC nanosheet exhibits a superior lithium storage performance of 360 and 330 mA h g-1 after 1200 and 2300 cycles at a current density of 500 and 1000 mA g-1 , respectively.

17.
J Colloid Interface Sci ; 608(Pt 3): 3168-3177, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34809992

RESUMO

The construction of hollow mesoporous carbon nanospheres (HMCS) avoiding the use of traditional soft/hard templates is highly desired for nanoscience yet challenging. Herein, we report a simple and straightforward template-free strategy for preparing nitrogen, sulfur dual-doped HMCSs (N/S-HMCSs) as oxygen reduction reaction (ORR) electrocatalysts. The unique hollow spherical and mesoporous structure was in-situ formed via a thermally initiated hollowing pathway from an elaborately engineered covalent triazine framework. Regulation of pyrolysis temperatures contributed to precisely tailoring of the shell thickness of HMCSs. The resulting N/S-HMCS900 (pyrolyzed at 900 °C) possessed high N and S contents, large specific surface areas, rich and uniform mesopores distribution. Consequently, as a metal-free ORR electrocatalyst, N/S-HMCS900 exhibits a high half-wave potential, excellent methanol tolerance and great long-term durability. Additionally, density functional theory calculations demonstrate that N, S-dual dopant can create extra active sites with higher catalytic activity than the isolated N-dopant. This strategy provides new insights into the construction of hollow and mesoporous multi-heteroatom-doped carbon materials with tunable nanoarchitecture for various electrochemical applications.

18.
Nano Lett ; 21(22): 9651-9660, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767374

RESUMO

Flexible aqueous zinc-ion batteries (ZIBs) are considered as promising energy storage devices for wearable electronics due to their cost-effectiveness, environmental friendliness, and high theoretical energy density. Herein, a flexible fiber-shaped aqueous ZIB is demonstrated by using a self-assembled Co3O4 nanosheet array on a carbon nanotube fiber as the cathode and Zn nanosheets deposited on a carbon nanotube fiber as the anode. The cycle life span of the fiber-shaped battery is largely enhanced by a simple electrolyte dynamics engineering strategy of preadding a trace amount of Co2+ cations in the mild aqueous electrolyte. The assembled fiber-shaped ZIB shows a high specific capacity (158.70 mAh g-1 at 1 A g-1), superior rate capacity, and excellent cycling life span (97.27% capacity retention after 10,000 cycles). Additionally, the fiber-shaped ZIB also shows superior flexibility, which can charge a smart watch under deformed states. This work provides new opportunities for the development of flexible, safe, and high-performance energy storage devices for wearable electronics.


Assuntos
Fontes de Energia Elétrica , Zinco , Cobalto , Eletrólitos , Óxidos
19.
Research (Wash D C) ; 2021: 9802795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738087

RESUMO

We report a novel Mn-Co-Ni-O (MCN) nanocomposite in which the p-type semiconductivity of Mn-Co-Ni-O can be manipulated by addition of graphene. With an increase of graphene content, the semiconductivity of the nanocomposite can be tuned from p-type through electrically neutral to n-type. The very low effective mass of electrons in graphene facilitates electron tunneling into the MCN, neutralizing holes in the MCN nanoparticles. XPS analysis shows that the multivalent manganese ions in the MCN nanoparticles are chemically reduced by the graphene electrons to lower-valent states. Unlike traditional semiconductor devices, electrons are excited from the filled graphite band into the empty band at the Dirac points from where they move freely in the graphene and tunnel into the MCN. The new composite film demonstrates inherent flexibility, high mobility, short carrier lifetime, and high carrier concentration. This work is useful not only in manufacturing flexible transistors, FETs, and thermosensitive and thermoelectric devices with unique properties but also in providing a new method for future development of 2D-based semiconductors.

20.
Nat Commun ; 12(1): 3360, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099690

RESUMO

Window glazing plays an essential role to modulate indoor light and heat transmission, which is a prospect to save the energy cost in buildings. The latest photovoltachromic technology has been regarded as one of the most ideal solutions, however, to achieve full-frame size (100% active area) and high-contrast ratio (>30% variable in visible wavelength) for smart window applicability is still a challenge. Here we report a photovoltachromic device combining full-transparent perovskite photovoltaic and ion-gel based electrochromic components in a vertical tandem architecture without any intermediated electrode. Most importantly, by accurately adjusting the halide-exchanging period, this photovoltachromic module can realize a high pristine transmittance up to 76%. Moreover, it possesses excellent colour-rendering index to 96, wide contrast ratio (>30%) on average visible transmittance (400-780 nm), and a self-adaptable transmittance adjustment and control indoor brightness and temperature automatically depending on different solar irradiances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA