Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(1): 154-159, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131082

RESUMO

Ketones are ubiquitous motifs in the realm of pharmaceuticals and natural products. Traditional approaches to accessing these species involve the addition of metal reagents to carboxyl compounds under harsh conditions. Herein, we report a cerium-catalyzed acylation of unactivated C(sp3)-H bonds using bench-stable acyl azolium reagents under mild and operationally-friendly conditions. This reaction exhibits excellent generality, accommodating a wide range of feedstock chemicals such as cycloalkanes and acyclic compounds as well as facilitating the late-stage functionalization of pharmaceuticals. We demonstrate further applications of our strategy with a three-component radical relay reaction and an enantioselective N-heterocyclic carbene (NHC) and cerium dual-catalyzed reaction.

2.
J Am Chem Soc ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906227

RESUMO

ß-Amino acids are useful building blocks of bioactive molecules, including peptidomimetics and pharmaceutical compounds. The current limited accessibility to ß2,2-type amino acids which bear an α-quaternary center has limited their use in chemical synthesis and biological investigations. Disclosed herein is the development of a new N-heterocyclic carbene/photocatalyzed aminocarboxylation of olefins, affording ß2,2-amino esters with high regioselectivity. The generation of nitrogen-centered radicals derived from simple imides via a sequence of deprotonation and single-electron oxidation allows for the subsequent addition to geminal-disubstituted olefins regioselectively. The intermediate tertiary radicals then cross-couple with a stabilized azolium-based radical generated in situ to efficiently construct the quaternary centers. Mechanistic studies, including Stern-Volmer fluorescence quenching experiments, support the proposed catalytic cycle.

3.
J Am Chem Soc ; 145(3): 1535-1541, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625715

RESUMO

Photoinduced hydrogen atom transfer (HAT) has been developed as a powerful tool to generate synthetically valuable radical species. The direct photoexcitation of ketones has been known to promote HAT or to generate acyl radicals through Norrish-type pathways, but these modalities remain severely limited by radical side reactions. We report herein a catalyst- and transition metal-free method for the acylation of C-H bonds that leverages the unique properties of stable, isolable acyl azolium species. Specifically, acyl azolium salts are shown to undergo an intermolecular and regioselective HAT upon LED irradiation with a range of substrates bearing active C-H bonds followed by C-C bond formation to afford ketones. Experimental and computational studies support photoexcitation of the acyl azolium followed by facile intersystem crossing to access triplet diradical species that promote selective HAT and radical-radical cross-coupling.

4.
Synlett ; 34(18): 2175-2180, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38948905

RESUMO

Potassium trifluoroborates have gained significant utility as coupling partners in organic synthesis, particularly in the Suzuki-Miyaura coupling reaction. Recently, they have also been used as radical precursors under oxidative conditions to generate carbon-centered radicals. These versatile reagents have found new applications in photoredox catalysis, including radical substitution, conjugate addition reactions, and transition metal dual catalysis. In addition, this photomediated redox neutral process has enabled radical-radical coupling with persistent radicals in the absence of a metal, and this process remains to be fully explored. In this study, we report the radical-radical coupling of benzylic potassium trifluoroborate salts with isolated acyl azolium triflates, which are persistent radical precursors. The reaction is catalyzed by an organic photocatalyst and forms isolable tertiary alcohol species. These compounds can be transformed into a range of substituted ketone products by simple treatment with a mild base.

5.
Tetrahedron ; 922021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34262231

RESUMO

Despite recent advancements in the selective generation and coupling of organic radical species, the alkoxycarbonyl radical remains underexplored relative to other carbon-containing radical species. Drawing inspiration from new strategies for generating acyl radical equivalents utilizing dual N-heterocyclic carbene catalysis and photocatalysis, we have prepared dimethylimidazolium esters that can function as an alkoxycarbonyl radical surrogate under photocatalytic conditions. We demonstrate the synthetic utility of these azolium-based partners through the preparation of esters arising from the coupling of this radical surrogate with an oxidatively generated alkyl radical.

6.
Green Synth Catal ; 1(1): 70-74, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34485961

RESUMO

Recent advances in photocatalysis have enabled radical methods with complementary chemoselectivity to established two electron bond forming approaches. While this radical strategy has previously been limited to substrates with favorable redox potentials, Brønsted/Lewis acid activation has emerged as a means of facilitating otherwise difficult reductions. We report herein our investigations into the Lewis acid-promoted redox activation of ß-ketocarbonyls in a model photocatalytic radical alkylation reaction. Rapid evaluation of substrates and reactions conditions was achieved by high throughput experimentation using 96-well plate photoreactors.

7.
Angew Chem Int Ed Engl ; 58(18): 5941-5945, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30843323

RESUMO

A direct decarboxylative strategy for the generation of aza-o-quinone methides (aza-o-QMs) by N-heterocyclic carbene (NHC) catalysis has been discovered and explored. This process requires no stoichiometric additives in contrast with current approaches. Aza-o-QMs react with trifluoromethyl ketones through a formal [4+2] manifold to access highly enantioenriched dihydrobenzoxazin-4-one products, which can be converted to dihydroquinolones through an interesting stereoretentive aza-Petasis-Ferrier rearrangement sequence. Complementary dispersion-corrected density functional theory (DFT) studies provided an accurate prediction of the reaction enantioselectivity and lend further insight to the origins of stereocontrol. Additionally, a computed potential energy surface around the major transition structure suggests a concerted asynchronous mechanism for the formal annulation.


Assuntos
Metano/análogos & derivados , Quinolonas/química , Catálise , Metano/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA