Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neuroscience ; 557: 89-99, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127342

RESUMO

Chronic stress leads to social avoidance and anhedonia in susceptible individuals, a phenomenon that has been observed in both human and animal models. Nevertheless, the underlying molecular mechanisms underpinning stress susceptibility and resilience remain largely unclear. There is growing evidence that epigenetic histone deacetylase (HDAC) mediated histone acetylation is involved in the modulation of depressive-related behaviors. We hypothesized that histone deacetylase 5 (HDAC5), which is associated with stress-related behaviors and antidepressant response, may play a vital role in the susceptibility to chronic stress. In the current study, we detected the levels of HDAC5 and acetylation of histone 4 (H4) in the hippocampus subsequent to chronic social defeat stress (CSDS) in C57BL/6J mice. We found that CSDS induces a notable increase in HDAC5 expression, concomitant with a reduction in the acetylation of histone H4 at lysine 12 (H4K12) in the hippocampus of susceptible mice. Meanwhile, intrahippocampal infusion of HDAC5 shRNA or HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) both reversed the depression susceptibility in susceptible mice that subjected to CSDS. Furthermore, HDAC5 overexpression was sufficient to induce depression susceptibility following microdefeat stress, accompanied by a significant reduction in H4K12 level within the hippocampus of mice. Additionally, the Morris water maze (MWM) results indicated that neither CSDS nor HDAC5 exerted significant effects on spatial memory function in mice. Taken together, these investigations indicated that HDAC5-modulated histone acetylation is implicated in regulating the depression susceptibility, and may be serve as potential preventive targets for susceptible individuals.

2.
Nat Commun ; 15(1): 6667, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107290

RESUMO

Natural evolution has resulted in reduced cold tolerance in cultivated tomato (Solanum lycopersicum). Herein, we perform a combined analysis of ATAC-Seq and RNA-Seq in cold-sensitive cultivated tomato and cold-tolerant wild tomato (S. habrochaites). We identify that WRKY34 has the most significant association with differential chromatin accessibility and expression patterns under cold stress. We find that a 60 bp InDel in the WRKY34 promoter causes differences in its transcription and cold tolerance among 376 tomato accessions. This 60 bp fragment contains a GATA cis-regulatory element that binds to SWIBs and GATA29, which synergistically suppress WRKY34 expression under cold stress. Moreover, WRKY34 interferes with the CBF cold response pathway through regulating transcription and protein levels. Our findings emphasize the importance of polymorphisms in cis-regulatory regions and their effects on chromatin structure and gene expression during crop evolution.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Cromatina/metabolismo , Cromatina/genética , Evolução Molecular
3.
Front Mol Biosci ; 11: 1407505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882606

RESUMO

As a novel post-translational modification of proteins, succinylation is widely present in both prokaryotes and eukaryotes. By regulating protein translocation and activity, particularly involved in regulation of gene expression, succinylation actively participates in diverse biological processes such as cell proliferation, differentiation and metabolism. Dysregulation of succinylation is closely related to many diseases. Consequently, it has increasingly attracted attention from basic and clinical researchers. For a thorough understanding of succinylation dysregulation and its implications for disease development, such as inflammation, tumors, cardiovascular and neurological diseases, this paper provides a comprehensive review of the research progress on abnormal succinylation. This understanding of association of dysregulation of succinylation with pathological processes will provide valuable directions for disease prevention/treatment strategies as well as drug development.

4.
BMJ Open ; 14(6): e083100, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910008

RESUMO

OBJECTIVES: To investigate the knowledge, attitude and practice (KAP) towards insomnia and sleep hygiene among patients with chronic insomnia. DESIGN: Web-based cross-sectional survey. SETTING: Shaanxi Provincial People's Hospital (northwest China) between January 2023 and May 2023. PARTICIPANTS: Patients with chronic insomnia. PRIMARY AND SECONDARY OUTCOME MEASURES: Demographic characteristics and KAP towards insomnia and sleep hygiene were collected by distributing a questionnaire developed by the authors. RESULTS: A total of 613 people participated in this study, with a Mean Knowledge Score of 7.63±2.56 (total score of 12), a Mean Attitude Score of 48.39±6.643 (total score of 70) and a Mean Practice Score of 42.37±8.592 (total score of 70). Knowledge was significantly correlated with attitude (r=0.447, p<0.001) and practice (r=0.327, p<0.001), and attitude was significantly correlated with practice (r=0.486, p<0.001). Multivariable logistic regression showed that higher knowledge (OR=1.181 (1.062-1.314), p=0.002) and better attitude (OR=1.171 (1.124-1.221), p<0.001) were independently associated with good practice. According to the structural equation modelling analysis, knowledge directly influenced practice (ß=0.457, p=<0.001) and attitude (ß=1.160, p=<0.001), while attitude influenced practice (ß=0.550, p=<0.001). CONCLUSION: The KAP towards insomnia and sleep hygiene among patients with chronic insomnia in Northwest China in 2023 was moderate, with better practice showing signs of being influenced by better knowledge and more positive attitudes.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Higiene do Sono , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Estudos Transversais , Feminino , Masculino , China/epidemiologia , Pessoa de Meia-Idade , Adulto , Inquéritos e Questionários , Doença Crônica , Modelos Logísticos , Idoso , Adulto Jovem
5.
Nat Commun ; 15(1): 5228, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898022

RESUMO

C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.


Assuntos
Ácidos Borônicos , Paládio , Paládio/química , Catálise , Ácidos Borônicos/química , Glicosídeos/química , Glicosídeos/síntese química , DNA/química
6.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856956

RESUMO

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Assuntos
Apoptose , AMP Cíclico , Ratos Sprague-Dawley , Receptores Odorantes , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Ratos , Masculino , AMP Cíclico/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Neurônios/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Transdução de Sinais
7.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701344

RESUMO

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2575-2584, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812158

RESUMO

Asari Radix et Rhizoma is a common drug for relieving exterior syndrome in clinics, but its toxicity limits its use. In this study, the mechanism of hepatic damage of Asari Radix et Rhizoma was studied by network pharmacology and metabolomics. The hepatic damage-related dataset, namely GSE54257 was downloaded from the GEO database. The Limma package was used to analyze the differentially expressed genes in the dataset GSE54257. Toxic components and target genes of Asari Radix et Rhizoma were screened by TCMSP, ECTM, and TOXNET. The hepatic damage target genes of Asari Radix et Rhizoma were obtained by mapping with the differentially expressed gene of GSE54257, and a PPI network was constructed. GO and KEGG enrichment analysis of target genes were performed, and a "miRNA-target gene-signal pathway" network was drawn with upstream miRNA information. Thirty rats were divided into a blank group, a high-dose Asari Radix et Rhizoma group, and a low-dose Asari Radix et Rhizoma group, which were administered once a day. After continuous administration for 28 days, liver function indexes and liver pathological changes were detected. Five liver tissue samples were randomly collected from the blank group and high-dose Asari Radix et Rhizoma group, and small molecule metabolites were analyzed by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS). The orthogonal partial least squares-discriminant analysis(OPLS-DA) method was used to screen differential metabolites, and enrichment analysis, correlation analysis, and cluster analysis were conducted for differential metabolites. Finally, the MetaboAnalyst platform was used to conduct pathway enrichment analysis for differential metabolites. It was found that there were 14 toxic components in Asari Radix et Rhizoma, corresponding to 37 target genes, and 12 genes related to liver toxicity of Asari Radix et Rhizoma were obtained by mapping to differentially expressed genes of GSE54257. The animal test results showed that Asari Radix et Rhizoma could significantly increase the liver function index, reduce the activity of the free radical scavenging enzyme, change the liver oxidative stress level, and induce lipid peroxidation damage in rats. The results of untargeted metabolomics analysis showed that compared with the blank group, nine metabolites were up-regulated, and 16 metabolites were down-regulated in the liver tissue of the Asari Radix et Rhizoma group. These 25 metabolites had strong correlations and good clustering. Pathway enrichment analysis showed that these differential metabolites and the 12 hepatotoxic target genes of Asari Radix et Rhizoma were mainly involved in purine metabolism, as well as the biosynthesis and metabolism of valine, leucine, glycine, serine, and threonine. The study confirmed that the hepatica damage effect of Asari Radix et Rhizoma was the result of multi-component, multi-target, and multi-signaling pathways, and its mechanism may be related to inhibiting nucleotide synthesis and affecting protein metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Fígado , Metabolômica , Animais , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Farmacologia em Rede , Ratos Sprague-Dawley , Asarum/química , Asarum/genética , Asarum/metabolismo , Rizoma/química , Humanos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética
9.
FEBS Open Bio ; 14(5): 855-866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494433

RESUMO

Gastric cancer has a high rate of recurrence, and as such, immunotherapy strategies are being investigated as a potential therapeutic strategy. Although the involvement of immune checkpoints in immunotherapy is well studied, biomechanical cues, such as target cell stiffness, have not yet been subject to the same level of investigation. Changes in the cholesterol content of the cell membrane directly influence tumor cell stiffness. Here, we investigated the effect of cholesterol on NK cell-mediated killing of gastric cancer stem-like cells. We report that surviving tumor cells with stem-like properties elevated cholesterol metabolism to evade NK cell cytotoxicity. Inhibition of cholesterol metabolism enhances NK cell-mediated killing of gastric cancer stem-like cells, highlighting a potential avenue for improving immunotherapy efficacy. This study suggests a possible effect of cancer cell stiffness on immune evasion and offers insights into enhancing immunotherapeutic strategies against tumors.


Assuntos
Colesterol , Células Matadoras Naturais , Células-Tronco Neoplásicas , Neoplasias Gástricas , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Colesterol/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Imunoterapia/métodos , Evasão Tumoral/imunologia
10.
J Mol Neurosci ; 74(1): 23, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381220

RESUMO

Neuronal apoptosis is crucial in the pathophysiology of ischemic stroke (IS), albeit its underly24ing mechanism remaining elusive. Investigating the mechanism of neuronal apoptosis in the context of IS holds substantial clinical value for enhancing the prognosis of IS patients. Notably, the MRPS9 gene plays a pivotal role in regulating mitochondrial function and maintaining structural integrity. Utilizing bioinformatic tactics and the extant gene expression data related to IS, we conducted differential analysis and weighted correlation network analysis (WGCNA) to select important modules. Subsequent gene interaction analysis via the STRING website facilitated the identification of the key gene-mitochondrial ribosomal protein S9 (MRPS9)-that affects the progression of IS. Moreover, possible downstream signaling pathways, namely PI3K/Akt/mTOR, were elucidated via Kyoto Encyclopedia of Gene and Genomes (KEGG) and Gene Ontology (GO) pathway analysis. Experimental models were established utilizing oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) in mice. Changes in gene and protein expression, as well as cell proliferation and apoptosis, were monitored through qPCR, WB, CCK8, and flow cytometry. An OGD/R cell model was further employed to investigate the role of MRPS9 in IS post transfusion of MRPS9 overexpression plasmids into cells. Further studies were conducted by transfecting overexpressed cells with PI3K/Akt/mTOR signaling pathway inhibitor LY294002 to unveil the mechanism of MRPS9 in IS. Bioinformatic analysis revealed a significant underexpression of MRPS9 in ischemic stroke patients. Correspondingly, in vitro experiments with HN cells subjected to OGD/R treatment demonstrated a marked reduction in MRPS9 expression, accompanied by a decline in cell viability, and an increase cell apoptosis. Notably, the overexpression of MRPS9 mitigated the OGD/R-induced decrease in cell viability and augmentation of apoptosis. In animal models, MRPS9 expression was significantly lower in the MCAO/R group compared to the sham surgery group. Further, the KEGG pathway analysis associated MRPS9 expression with the PI3K/Akt/mTOR signaling pathway. In cells treated with the specific PI3K/Akt/mTOR inhibitor LY294002, phosphorylation levels of Akt and mTOR were decreased, cell viability decreased, and apoptosis increased compared to the MRPS9 overexpression group. These findings collectively indicate that MRPS9 overexpression inhibits PI3K/Akt/mTOR pathway activation, thereby protecting neurons from apoptosis and impeding IS progression. However, the PI3K/Akt/mTOR inhibitor LY294002 is capable of counteracting the protective effect of MRPS9 overexpression on neuronal apoptosis and IS. Our observations underscore the potential protective role of MRPS9 in modulating neuronal apoptosis and in attenuating the pathophysiological developments associated with IS. This is achieved through the regulation of the PI3K/Akt/mTOR pathway. These insights forge new perspectives and propose novel targets for the strategic diagnosis and treatment of IS.


Assuntos
AVC Isquêmico , Fosfatidilinositol 3-Quinases , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Apoptose
11.
Eur J Med Res ; 29(1): 101, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321571

RESUMO

Iron metabolism disorders are implicated in the pathogenesis of Alzheimer's disease (AD). It was previously reported that transferrin receptor (TFR1) expression was upregulated in AD mouse model. However, the precise biological functions of TFR1 in AD progression remains unclear. Herein, we observed a gradual increase in TFR1 protein expression during the differentiation of AD patient-derived induced pluripotent stem cells (AD-iPS). TFR1 knockdown inhibited the protein expression of ferritin and ferritin heavy chain 1 (FTH1), enhanced the expression of ferroportin 1 (FPN1), and decreased intracellular levels of total iron, labile iron, and reactive oxygen species (ROS). Moreover, TFR1 knockdown improved mitochondrial membrane potential (MMP), increased adenosine triphosphate (ATP) content, downregulated mitochondrial fission proteins, and upregulated mitochondrial fusion proteins. TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS, while TFR1 overexpression showed the opposite results. Additionally, TFR1interacted with glycogen synthase kinase 3 beta (GSK3B) and promoted GSK3B expression. GSK3B overexpression reversed the inhibitory effects of TFR1 knockdown on iron overload and mitochondrial dysfunction in AD-iPS differentiated neural cells. In conclusion, TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS by promoting GSK3B expression. Our findings provide a potential therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Sobrecarga de Ferro , Doenças Mitocondriais , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Sobrecarga de Ferro/metabolismo
12.
World J Psychiatry ; 14(1): 26-35, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38327895

RESUMO

BACKGROUND: With the continuous growth of the modern elderly population, the risk of fracture increases. Hip fracture is a common type of fracture in older people. Total hip arthroplasty (THA) has significant advantages in relieving chronic pain and promoting the recovery of hip joint function. AIM: To investigate the effect of ulinastatin combined with dexmedetomidine (Dex) on the incidences of postoperative cognitive dysfunction (POCD) and emergence agitation in elderly patients who underwent THA. METHODS: A total of 397 patients who underwent THA from February 2019 to August 2022. We conducted a three-year retrospective cohort study in Shaanxi Provincial People's Hospital. Comprehensive demographic data were obtained from the electronic medical record system. We collected preoperative, intraoperative, and postoperative data. One hundred twenty-nine patients who were administered Dex during the operation were included in the Dex group. One hundred fifty patients who were intravenously injected with ulinastatin 15 min before anesthesia induction were included in the ulinastatin group. One hundred eighteen patients who were administered ulinastatin combined with Dex during the operation were included in the Dex + ulinastatin group. The patients' perioperative conditions, hemodynamic indexes, postoperative Mini-Mental State Examination (MMSE) scores, Ramsay score, incidence of POCD, and serum inflammatory cytokines were evaluated. RESULTS: There was a significant difference in the 24 h visual analogue scale score among the three groups, and the score in the Dex + ulinastatin group was the lowest (P < 0.05). Compared with the Dex and ulinastatin group, the MMSE scores of the Dex + ulinastatin group were significantly increased at 1 and 7 d after the operation (all P < 0.05). Compared with those in the Dex and ulinastatin groups, incidence of POCD, levels of serum inflammatory cytokines in the Dex + ulinastatin group were significantly decreased at 1 and 7 d after the operation (all P < 0.05). The observer's assessment of the alertness/sedation score and Ramsay score of the Dex + ulinastatin group were significantly different from those of the Dex and ulinastatin groups on the first day after the operation (all P < 0.05). CONCLUSION: Ulinastatin combined with Dex can prevent the occurrence of POCD and emergence agitation in elderly patients undergoing THA.

13.
Mol Hortic ; 4(1): 6, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373989

RESUMO

Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys546 in PbrADC1, whose activity was modified by H2O2, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.

14.
J Mol Cell Biol ; 16(2)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38389254

RESUMO

Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting polymerization. Importantly, CSPP1-bound MTs were resistant to mitotic centromere-associated kinesin-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Microtúbulos/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fuso Acromático/metabolismo
15.
Food Chem X ; 20: 101010, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144808

RESUMO

The unripe fruit or peel of Citrus aurantium L., Citrus sinensis Osbeck, and Citrus reticulata Blanco are often disregarded due to perceptions of their marginal value. The present study was undertaken to explore the differences in phytochemical composition and bioactive properties of five citrus by-products in China and demonstrate their potential value. 214 compounds were systematically identified using LC-Orbitrap-MS analysis. Among them, narirutin, naringin, hesperidin, and neohesperidin were established as essential compounds for the discrimination and authentication of the five by-products via a combination of LC-MS, HPLC, and TLC techniques. Variations in the antioxidant activity of the by-products were observed, which correlated with their maturity and were attributable to differences in their active ingredients. Moreover, spectrum-effect relationship analysis revealed that the four previously identified differential markers, along with nobiletin and tangeretin, significantly contributed to the differences in antioxidant activity. The results highlight the potential for citrus by-product enhancement and utilization.

16.
Polymers (Basel) ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201716

RESUMO

Dual-component epoxy resins are widely used for bonding different materials in automotive interior processing. However, due to the complexity and variability of automotive interior parts, uneven temperature distribution on curved surfaces during the thermoforming process can lead to uneven thermal stress distribution, damaging the interior components. This study focuses on addressing the damage issues caused by uneven thermal stress distribution during the thermoforming of automotive interior components. By monitoring the temperature and strain on the adhesive surface of the interior components during processing, using sensors and combining the readings with a finite element simulation, damage to the adhesive during processing was simulated. Based on this, a segmented thermoforming method for the model surface was employed, but it was found that this method did not significantly reduce the level of damage to the adhesive during application. Building upon the segmented simulation, significant results were achieved by applying temperature modulation at a certain frequency to adjust the damage of the interior components during processing. The techniques used in this study successfully reduced the unevenness of the adhesive surface temperature, improved the performance of the adhesive during application through segmented optimization and the application of ultrasound-assisted techniques, and markedly reduced the manufacturing process's energy consumption.

17.
Zootaxa ; 5357(4): 587-594, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38220630

RESUMO

The family Neopseustidae is reported from Yunnan Province, Southwest China, for the first time, with a new species, N. gaoligongensis Huang & Chen, sp. n., described from Mt. Gaoligong, West Yunnan, based on molecular and morphological evidence. The new species was found to belong to the N. bicornuta species-group and is closely related to N. fanjingshana Yang, 1988, but can be distinguished from it by the differences in morphology and a 3.2% COI distance. Adults and genitalia of the new species and N. fanjingshana are illustrated, and the molecular phylogeny based on COI barcoding of the genus Neopseustis is also updated.


Assuntos
Lepidópteros , Animais , China , Genitália , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA