Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Protein Cell ; 15(4): 261-284, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011644

RESUMO

Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Fragmentos de Peptídeos , Substância P/análogos & derivados , Camundongos , Animais , Doença de Alzheimer/metabolismo , Inteligência Artificial , Estudo de Associação Genômica Ampla , Simulação de Acoplamento Molecular , Transtornos da Memória/metabolismo
2.
Transl Psychiatry ; 12(1): 352, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038535

RESUMO

Dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Hitherto, sample sizes from differential miRNA expression studies in AD are exceedingly small aggravating any biological inference. To overcome this limitation, we investigated six candidate miRNAs in a large collection of brain samples. Brain tissue was derived from superior temporal gyrus (STG) and entorhinal cortex (EC) from 99 AD patients and 91 controls. MiRNA expression was examined by qPCR (STG) or small RNA sequencing (EC). Brain region-dependent differential miRNA expression was investigated in a transgenic AD mouse model using qPCR and FISH. Total RNA sequencing was used to assess differential expression of miRNA target genes. MiR-129-5p, miR-132-5p, and miR-138-5p were significantly downregulated in AD vs. controls both in STG and EC, while miR-125b-5p and miR-501-3p showed no evidence for differential expression in this dataset. In addition, miR-195-5p was significantly upregulated in EC but not STG in AD patients. The brain region-specific pattern of miR-195-5p expression was corroborated in vivo in transgenic AD mice. Total RNA sequencing identified several novel and functionally interesting target genes of these miRNAs involved in synaptic transmission (GABRB1), the immune-system response (HCFC2) or AD-associated differential methylation (SLC16A3). Using two different methods (qPCR and small RNA-seq) in two separate brain regions in 190 individuals we more than doubled the available sample size for most miRNAs tested. Differential gene expression analyses confirm the likely involvement of miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p in AD pathogenesis and highlight several novel potentially relevant target mRNAs.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Animais , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência de RNA
3.
J Neurochem ; 154(4): 441-457, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31951013

RESUMO

MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3ß (GSK-3ß) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aß insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , MicroRNAs/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas tau , Doença de Alzheimer/metabolismo , Animais , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia
4.
Curr Neuropharmacol ; 17(12): 1146-1157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31362659

RESUMO

DNA double-strand breaks (DSBs) are common events that were recognized as one of the most toxic lesions in eukaryotic cells. DSBs are widely involved in many physiological processes such as V(D)J recombination, meiotic recombination, DNA replication and transcription. Deregulation of DSBs has been reported in multiple diseases in human beings, such as the neurodegenerative diseases, with which the underlying mechanisms are needed to be illustrated. Here, we reviewed the recent insights into the dysfunction of DSB formation and repair, contributing to the pathogenesis of neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and ataxia telangiectasia (A-T).


Assuntos
Quebras de DNA de Cadeia Dupla , Doenças Neurodegenerativas/genética , Animais , Humanos , Doenças Neurodegenerativas/metabolismo
5.
Mol Ther Nucleic Acids ; 10: 269-276, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499939

RESUMO

Long non-coding RNA (lncRNA) is a kind of non-coding RNA (ncRNA), with a length of 200 nt to 100 kb, that lacks a significant open reading frame (ORF) encoding a protein. lncRNAs are widely implicated in various physiological and pathological processes, such as epigenetic regulation, cell cycle regulation, cell differentiation regulation, cancer, and neurodegenerative diseases, through their interactions with chromatin, protein, and other RNAs. Numerous studies have suggested that lncRNAs are closely linked with the occurrence and development of a variety of diseases, especially neurodegenerative diseases, of which the etiologies are complicated and the underlying mechanisms remain elusive. Determining the roles of lncRNA in the pathogenesis of neurodegenerative diseases will not only deepen understanding of the physiological and pathological processes that occur in those diseases but also provide new ideas and solutions for their diagnosis and prevention. This review aims to highlight the progress of lncRNA research in the pathological and behavioral changes of neurodegenerative diseases. Specifically, we focus on how lncRNA dysfunctions are involved in the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA