Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Biol Macromol ; 279(Pt 1): 135042, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182876

RESUMO

The lignin biosynthesis pathway plays a crucial role in the defense response against V. dahliae in cotton, and it is essential to identify the key regulators in this pathway for disease-resistant breeding. In a previous study, the cotton laccase gene GhLac1 was identified as mediating plant broad-spectrum biotic stress tolerance by manipulating phenylpropanoid metabolism. However, the upstream master regulators and regulatory mechanism of lignin are still largely unknown. This study aims to identify the upstream regulators of GhLac1 and explore the molecular mechanism underlying cotton's disease resistance response to V. dahliae. Through the study, three WRKY, three MYB, and one APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) TFs were identified as differentially responding to V. dahliae infection in cotton. Among these TFs, GhWRKY30, GhWRKY41, GhMYB42, and GhTINY2 were found to directly bind to the GhLac1 promoter and activate its expression. Transient overexpression of these four TFs in cotton led to increased expression of GhLac1 and other the laccase family members, while knockdown of these TFs resulted in reduced lignin accumulation and increased susceptibility to V. dahliae. Additionally, GhWRKY30 and GhWRKY41 were observed to interact with themselves and with each other, synergistically transactivating the GhLac1 promoter. This study reveals a GhLac1-centered transcriptional regulatory cascade of lignin synthesis that contributes to cotton's defense response by modulating lignin metabolism.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Gossypium , Lignina , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Lignina/biossíntese , Lignina/metabolismo , Gossypium/genética , Gossypium/microbiologia , Gossypium/metabolismo , Gossypium/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lacase/genética , Lacase/metabolismo , Ascomicetos , Regiões Promotoras Genéticas , Verticillium
2.
Nat Commun ; 15(1): 5733, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977687

RESUMO

The occurrence of whole-genome duplication or polyploidy may promote plant adaptability to harsh environments. Here, we clarify the evolutionary relationship of eight GhCIPK6 homologous genes in upland cotton (Gossypium hirsutum). Gene expression and interaction analyses indicate that GhCIPK6 homologous genes show significant functional changes after polyploidy. Among these, GhCIPK6D1 and GhCIPK6D3 are significantly up-regulated by drought stress. Functional studies reveal that high GhCIPK6D1 expression promotes cotton drought sensitivity, while GhCIPK6D3 expression promotes drought tolerance, indicating clear functional differentiation. Genetic and biochemical analyses confirm the synergistic negative and positive regulation of cotton drought resistance through GhCBL1A1-GhCIPK6D1 and GhCBL2A1-GhCIPK6D3, respectively, to regulate stomatal movement by controlling the directional flow of K+ in guard cells. These results reveal differentiated roles of GhCIPK6 homologous genes in response to drought stress in upland cotton following polyploidy. The work provides a different perspective for exploring the functionalization and subfunctionalization of duplicated genes in response to polyploidization.


Assuntos
Secas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Poliploidia , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genes de Plantas , Filogenia , Duplicação Gênica , Plantas Geneticamente Modificadas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Resistência à Seca
3.
J Fungi (Basel) ; 10(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667913

RESUMO

Fusarium oxysporum f. sp. vasinfectum (Fov) is a common soilborne fungal pathogen that causes Fusarium wilt (FW) disease in cotton. Although considerable progress has been made in cotton disease-resistance breeding against FW in China, and the R gene conferring resistance to Fov race 7 (FOV) in Upland cotton (Gossypium hirsutum) has been identified, knowledge regarding the evolution of fungal pathogenicity and virulence factors in Fov remains limited. In this study, we present a reference-scale genome assembly and annotation for FOV7, created through the integration of single-molecule real-time sequencing (PacBio) and high-throughput chromosome conformation capture (Hi-C) techniques. Comparative genomics analysis revealed the presence of six supernumerary scaffolds specific to FOV7. The genes or sequences within this region can potentially serve as reliable diagnostic markers for distinguishing Fov race 7. Furthermore, we conducted an analysis of the xylem sap proteome of FOV7-infected cotton plants, leading to the identification of 19 proteins that are secreted in xylem (FovSIX). Through a pathogenicity test involving knockout mutants, we demonstrated that FovSIX16 is crucial for the full virulence of FOV7. Overall, this study sheds light on the underlying mechanisms of Fov's pathogenicity and provides valuable insights into potential management strategies for controlling FW.

4.
Plant Biotechnol J ; 22(2): 497-511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37883523

RESUMO

Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.


Assuntos
Ascomicetos , Verticillium , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas/genética
5.
Nat Commun ; 14(1): 7392, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968319

RESUMO

Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.


Assuntos
Ascomicetos , Pontos Quânticos , Verticillium , Resistência à Doença/genética , Espécies Reativas de Oxigênio/metabolismo , Polietilenoimina , Gossypium/genética , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
6.
Nat Genet ; 55(11): 1987-1997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845354

RESUMO

Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.


Assuntos
Gossypium , Melhoramento Vegetal , Gossypium/genética , Alelos , Domesticação , Poliploidia , Transcriptoma , Fibra de Algodão , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética
7.
Plant Methods ; 19(1): 75, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516875

RESUMO

BACKGROUND: Verticillium wilt is the major disease of cotton, which would cause serious yield reduction and economic losses, and the identification of cotton verticillium wilt is of great significance to cotton research. However, the traditional method is still manual, which is subjective, inefficient, and labor-intensive, and therefore, this study has proposed a novel method for cotton verticillium wilt identification based on spectral and image feature fusion. The cotton hyper-spectral images have been collected, while the regions of interest (ROI) have been extracted as samples including 499 healthy leaves and 498 diseased leaves, and the average spectral information and RGB image of each sample were obtained. In spectral feature processing, the preprocessing methods including Savitzky-Golay smoothing (SG), multiplicative scatter correction (MSC), de-trending (DT) and mean normalization (MN) algorithms have been adopted, while the feature band extraction methods have adopted principal component analysis (PCA) and successive projections algorithm (SPA). In RGB image feature processing, the EfficientNet was applied to build classification model and 16 image features have been extracted from the last convolutional layer. And then, the obtained spectral and image features were fused, while the classification model was established by support vector machine (SVM) and back propagation neural network (BPNN). Additionally, the spectral full bands and feature bands were used as comparison for SVM and BPNN classification respectively. RESULT: The results showed that the average accuracy of EfficientNet for cotton verticillium wilt identification was 93.00%. By spectral full bands, SG-MSC-BPNN model obtained the better performance with classification accuracy of 93.78%. By feature bands, SG-MN-SPA-BPNN model obtained the better performance with classification accuracy of 93.78%. By spectral and image fused features, SG-MN-SPA-FF-BPNN model obtained the best performance with classification accuracy of 98.99%. CONCLUSIONS: The study demonstrated that it was feasible and effective to use fused spectral and image features based on hyper-spectral imaging to improve identification accuracy of cotton verticillium wilt. The study provided theoretical basis and methods for non-destructive and accurate identification of cotton verticillium wilt.

8.
Plant Commun ; 4(6): 100660, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37455428

RESUMO

High-temperature (HT) stress causes male sterility in crops, thus decreasing yields. To explore the possible contribution of histone modifications to male fertility under HT conditions, we defined the histone methylation landscape for the marks histone H3 lysine 27 trimethylation (H3K27me3) and histone H3 lysine 4 trimethylation (H3K4me3) by chromatin immunoprecipitation sequencing (ChIP-seq) in two differing upland cotton (Gossypium hirsutum) varieties. We observed a global disruption in H3K4me3 and H3K27me3 modifications, especially H3K27me3, in cotton anthers subjected to HT. HT affected the bivalent H3K4me3-H3K27me3 modification more than either monovalent modification. We determined that removal of H3K27me3 at the promoters of jasmonate-related genes increased their expression, maintaining male fertility under HT in the HT-tolerant variety at the anther dehiscence stage. Modulating jasmonate homeostasis or signaling resulted in an anther indehiscence phenotype under HT. Chemical suppression of H3K27me3 deposition increased jasmonic acid contents and maintained male fertility under HT. In summary, our study provides new insights into the regulation of male fertility by histone modifications under HT and suggests a potential strategy for improving cotton HT tolerance.


Assuntos
Gossypium , Histonas , Histonas/genética , Gossypium/genética , Gossypium/metabolismo , Lisina/metabolismo , Temperatura , Fertilidade/genética
10.
Plant Phenomics ; 5: 0013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040292

RESUMO

Verticillium wilt is one of the most critical cotton diseases, which is widely distributed in cotton-producing countries. However, the conventional method of verticillium wilt investigation is still manual, which has the disadvantages of subjectivity and low efficiency. In this research, an intelligent vision-based system was proposed to dynamically observe cotton verticillium wilt with high accuracy and high throughput. Firstly, a 3-coordinate motion platform was designed with the movement range 6,100 mm × 950 mm × 500 mm, and a specific control unit was adopted to achieve accurate movement and automatic imaging. Secondly, the verticillium wilt recognition was established based on 6 deep learning models, in which the VarifocalNet (VFNet) model had the best performance with a mean average precision (mAP) of 0.932. Meanwhile, deformable convolution, deformable region of interest pooling, and soft non-maximum suppression optimization methods were adopted to improve VFNet, and the mAP of the VFNet-Improved model improved by 1.8%. The precision-recall curves showed that VFNet-Improved was superior to VFNet for each category and had a better improvement effect on the ill leaf category than fine leaf. The regression results showed that the system measurement based on VFNet-Improved achieved high consistency with manual measurements. Finally, the user software was designed based on VFNet-Improved, and the dynamic observation results proved that this system was able to accurately investigate cotton verticillium wilt and quantify the prevalence rate of different resistant varieties. In conclusion, this study has demonstrated a novel intelligent system for the dynamic observation of cotton verticillium wilt on the seedbed, which provides a feasible and effective tool for cotton breeding and disease resistance research.

11.
Plant J ; 115(1): 190-204, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36994650

RESUMO

Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.


Assuntos
Resistência à Doença , Verticillium , Ligases/metabolismo , Lignina/metabolismo , Verticillium/fisiologia , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
12.
Plant Biotechnol J ; 21(5): 961-978, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36632704

RESUMO

Despite the established significance of WRKY proteins and phenylpropanoid metabolism in plant immunity, how WRKY proteins modulate aspects of the phenylpropanoid pathway remains undetermined. To understand better the role of WRKY proteins in plant defence, we identified a cotton (Gossypium hirsutum) protein, GhWRKY41, that is, universally and rapidly induced in three disease-resistant cotton cultivars following inoculation with the plant pathogenic fungus, Verticillium dahliae. We show that overexpression of GhWRKY41 in transgenic cotton and Arabidopsis enhances resistance to V. dahliae, while knock-down increases cotton more susceptibility to the fungus. GhWRKY41 physically interacts with itself and directly activates its own transcription. A genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), in combination with RNA sequencing (RNA-seq) analyses, revealed that 43.1% of GhWRKY41-binding genes were up-regulated in cotton upon inoculation with V. dahliae, including several phenylpropanoid metabolism master switches, receptor kinases, and disease resistance-related proteins. We also show that GhWRKY41 homodimer directly activates the expression of GhC4H and Gh4CL, thereby modulating the accumulation of lignin and flavonoids. This finding expands our understanding of WRKY-WRKY protein interactions and provides important insights into the regulation of the phenylpropanoid pathway in plant immune responses by a WRKY protein.


Assuntos
Ascomicetos , Verticillium , Gossypium/metabolismo , Retroalimentação , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
13.
Nat Genet ; 54(12): 1959-1971, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36474047

RESUMO

Phenotypic diversity and evolutionary innovation ultimately trace to variation in genomic sequence and rewiring of regulatory networks. Here, we constructed a pan-genome of the Gossypium genus using ten representative diploid genomes. We document the genomic evolutionary history and the impact of lineage-specific transposon amplification on differential genome composition. The pan-3D genome reveals evolutionary connections between transposon-driven genome size variation and both higher-order chromatin structure reorganization and the rewiring of chromatin interactome. We linked changes in chromatin structures to phenotypic differences in cotton fiber and identified regulatory variations that decode the genetic basis of fiber length, the latter enabled by sequencing 1,005 transcriptomes during fiber development. We showcase how pan-genomic, pan-3D genomic and genetic regulatory data serve as a resource for delineating the evolutionary basis of spinnable cotton fiber. Our work provides insights into the evolution of genome organization and regulation and will inform cotton improvement by enabling regulome-based approaches.


Assuntos
Genômica , Gossypium , Gossypium/genética , Cromatina
14.
J Integr Plant Biol ; 64(10): 2009-2025, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35929662

RESUMO

The double-recessive genic male-sterile (ms) line ms5 ms6 has been used to develop cotton (Gossypium hirsutum) hybrids for many years, but its molecular-genetic basis has remained unclear. Here, we identified the Ms5 and Ms6 loci through map-based cloning and confirmed their function in male sterility through CRISPR/Cas9 gene editing. Ms5 and Ms6 are highly expressed in stages 7-9 anthers and encode the cytochrome P450 mono-oxygenases CYP703A2-A and CYP703A2-D. The ms5 mutant carries a single-nucleotide C-to-T nonsense mutation leading to premature chain termination at amino acid 312 (GhCYP703A2-A312aa ), and ms6 carries three nonsynonymous substitutions (D98E, E168K, and G198R) and a synonymous mutation (L11L). Enzyme assays showed that GhCYP703A2 proteins hydroxylate fatty acids, and the ms5 (GhCYP703A2-A312aa ) and ms6 (GhCYP703A2-DD98E,E168K,G198R ) mutant proteins have decreased enzyme activities. Biochemical and lipidomic analyses showed that in ms5 ms6 plants, C12-C18 free fatty acid and phospholipid levels are significantly elevated in stages 7-9 anthers, while stages 8-10 anthers lack sporopollenin fluorescence around the pollen, causing microspore degradation and male sterility. Overall, our characterization uncovered functions of GhCYP703A2 in sporopollenin formation and fertility, providing guidance for creating male-sterile lines to facilitate hybrid cotton production and therefore exploit heterosis for improvement of cotton.


Assuntos
Gossypium , Infertilidade das Plantas , Aminoácidos/metabolismo , Códon sem Sentido/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Gossypium/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleotídeos/metabolismo , Fosfolipídeos/metabolismo , Infertilidade das Plantas/genética
16.
Plants (Basel) ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684255

RESUMO

With the promotion and popularization of machine cotton-picking, more and more attention has been paid to the selection of early-maturity varieties with compact plant architecture. The type of fruit branch is one of the most important factors affecting plant architecture and early maturity of cotton. Heredity analysis of the cotton fruit branch is beneficial to the breeding of machine-picked cotton. Phenotype analysis showed that the types of fruit branches in cotton are controlled by a single recessive gene. Using an F2 population crossed with Huaxin102 (normal branch) and 04N-11 (nulliplex branch), BSA (Bulked Segregant Analysis) resequencing analysis and GhNB gene cloning in 04N-11, and allelic testing, showed that fruit branch type was controlled by the GhNB gene, located on chromosome D07. Ghnb5, a new recessive genotype of GhNB, was found in 04N-11. Through candidate gene association analysis, SNP 20_15811516_SNV was found to be associated with plant architecture and early maturity in the Xinjiang natural population. The GhNB gene, which is related to early maturity and the plant architecture of cotton, is a branch-type gene of cotton. The 20_15811516_SNV marker, obtained from the Xinjiang natural population, was used for the assisted breeding of machine-picked cotton varieties.

17.
Plant Physiol ; 189(4): 2091-2109, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522025

RESUMO

High temperature (HT) causes male sterility and decreases crop yields. Our previous works have demonstrated that sugar and auxin signaling pathways, Gossypium hirsutum Casein kinase I (GhCKI), and DNA methylation are all involved in HT-induced male sterility in cotton. However, the signaling mechanisms leading to distinct GhCKI expression patterns induced by HT between HT-tolerant and HT-sensitive cotton anthers remain largely unknown. Here, we identified a GhCKI promoter (ProGhCKI) region that functions in response to HT in anthers and found the transcription factor GhMYB4 binds to this region to act as an upstream positive regulator of GhCKI. In the tapetum of early-stage cotton anthers, upregulated expression of GhMYB4 under HT and overexpressed GhMYB4 under normal temperature both led to severe male sterility phenotypes, coupled with enhanced expression of GhCKI. We also found that GhMYB4 interacts with GhMYB66 to form a heterodimer to enhance its binding to ProGhCKI. However, GhMYB66 showed an expression pattern similar to GhMYB4 under HT but did not directly bind to ProGhCKI. Furthermore, HT reduced siRNA-mediated CHH DNA methylations in the GhMYB4 promoter, which enhanced the expression of GhMYB4 in tetrad stage anthers and promoted the formation of the GhMYB4/GhMYB66 heterodimer, which in turn elevated the transcription of GhCKI in the tapetum, leading to male sterility. Overall, we shed light on the GhMYB66-GhMYB4-GhCKI regulatory pathway in response to HT in cotton anthers.


Assuntos
Gossypium , Infertilidade Masculina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Temperatura Alta , Humanos , Masculino , Temperatura
18.
Plant Methods ; 18(1): 53, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449108

RESUMO

BACKGROUND: From an economic perspective, cotton is one of the most important crops in the world. The fertility of male reproductive organs is a key determinant of cotton yield. Anther dehiscence or indehiscence directly determines the probability of fertilization in cotton. Thus, rapid and accurate identification of cotton anther dehiscence status is important for judging anther growth status and promoting genetic breeding research. The development of computer vision technology and the advent of big data have prompted the application of deep learning techniques to agricultural phenotype research. Therefore, two deep learning models (Faster R-CNN and YOLOv5) were proposed to detect the number and dehiscence status of anthers. RESULT: The single-stage model based on YOLOv5 has higher recognition speed and the ability to deploy to the mobile end. Breeding researchers can apply this model to terminals to achieve a more intuitive understanding of cotton anther dehiscence status. Moreover, three improvement strategies are proposed for the Faster R-CNN model, where the improved model has higher detection accuracy than the YOLOv5 model. We have made three improvements to the Faster R-CNN model and after the ensemble of the three models and original Faster R-CNN model, R2 of "open" reaches to 0.8765, R2 of "close" reaches to 0.8539, R2 of "all" reaches to 0.8481, higher than the prediction results of either model alone, which are completely able to replace the manual counting results. We can use this model to quickly extract the dehiscence rate of cotton anthers under high temperature (HT) conditions. In addition, the percentage of dehiscent anthers of 30 randomly selected cotton varieties were observed from the cotton population under normal conditions and HT conditions through the ensemble of the Faster R-CNN model and manual counting. The results show that HT decreased the percentage of dehiscent anthers in different cotton lines, consistent with the manual method. CONCLUSIONS: Deep learning technology have been applied to cotton anther dehiscence status recognition instead of manual methods for the first time to quickly screen HT-tolerant cotton varieties. Deep learning can help to explore the key genetic improvement genes in the future, promoting cotton breeding and improvement.

19.
Genome Biol ; 23(1): 45, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115029

RESUMO

BACKGROUND: Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. RESULTS: To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. CONCLUSIONS: This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.


Assuntos
Cromatina , Fibra de Algodão , Diferenciação Celular , Genoma
20.
BMC Plant Biol ; 21(1): 229, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022812

RESUMO

BACKGROUND: Casein kinase I (CKI) is a kind of serine/threonine protein kinase highly conserved in plants and animals. Although molecular function of individual member of CKI family has been investigated in Arabidopsis, little is known about their evolution and functions in Gossypium. RESULTS: In this study, five cotton species were applied to study CKI gene family in cotton, twenty-two species were applied to trace the origin and divergence of CKI genes. Four important insights were gained: (i) the cotton CKI genes were classified into two types based on their structural characteristics; (ii) two types of CKI genes expanded with tetraploid event in cotton; (iii) two types of CKI genes likely diverged about 1.5 billion years ago when red and green algae diverged; (iv) two types of cotton CKI genes which highly expressed in leaves showed stronger response to photoperiod (circadian clock) and light signal, and most two types of CKI genes highly expressed in anther showed identical heat inducible expression during anther development in tetraploid cotton (Gossypium hirsutum). CONCLUSION: This study provides genome-wide insights into the evolutionary history of cotton CKI genes and lays a foundation for further investigation of the functional differentiation of two types of CKI genes in specific developmental processes and environmental stress conditions.


Assuntos
Caseína Quinase I/genética , Evolução Molecular , Gossypium/genética , Proteínas de Plantas/genética , Caseína Quinase I/metabolismo , Genoma de Planta , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA