Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Nanoscale Horiz ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956971

RESUMO

Photocatalysis is a widely recognized green and sustainable technology that can harness inexhaustible solar energy to carry out chemical reactions, offering the opportunity to mitigate environmental issues and the energy crisis. Photocatalysts with wide spectral response and rapid charge transfer capability are crucial for highly efficient photocatalytic activity. Atomically precise metal nanoclusters (NCs), an emerging atomic-level material, have attracted great interests owing to their ultrasmall size, unique atomic stacking, abundant surface active sites, and quantum confinement effect. In particular, the molecule-like discrete electronic energy level endows them with small-band-gap semiconductor behavior, which allows for photoexcitation in order to generate electrons and holes to participate in the photoredox reaction. In addition, metal NCs exhibit strong light-harvesting ability in the wide spectral UV-near IR region, and the diversity of optical absorption properties can be precisely regulated by the composition and structure. These merits make metal NCs ideal candidates for photocatalysis. In this review, the recent advances in atomically-precise metal NCs for photocatalytic application are summarized, including photocatalytic water splitting, CO2 reduction, organic transformation, photoelectrocatalytic reactions, N2 fixation and H2O2 production. In addition, the strategy for promoting photostability, charge transfer and separation efficiency of metal NCs is highlighted. Finally, a perspective on the challenges and opportunities for NCs-based photocatalysts is provided.

2.
Nat Commun ; 15(1): 5962, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013901

RESUMO

Dual emission (DE) in nanoclusters (NCs) is considerably significant in the research and application of ratiometric sensing, bioimaging, and novel optoelectronic devices. Exploring the DE mechanism in open-shell NCs with doublet or quartet emissions remains challenging because synthesizing open-shell NCs is difficult due to their inherent instability. Here, we synthesize two dual-emissive M1Ag13(PFBT)6(TPP)7 (M = Pt, Pd; PFBT = pentafluorobenzenethiol; TPP = triphenylphosphine) NCs with a 7-electron open-shell configuration to reveal the DE mechanism. Both NCs comprise a crown-like M1Ag11 kernel with Pt or Pd in the center surrounded by five PPh3 ligands and two Ag(SR)3(PPh3) motifs. The combined experimental and theoretical studies revealed the origin of DE in Pt1Ag13 and Pd1Ag13. Specifically, the high-energy visible emission and the low-energy near-infrared emission arise from two distinct quartet excited states: the core-shell charge transfer and core-based states, respectively. Moreover, PFBT ligands are found to play an important role in the existence of DE, as its low-lying π* levels result in energetically accessible core-shell transitions. This novel report on the dual-quartet phosphorescent emission in NCs with an open-shell electronic configuration advances insights into the origin of dual-emissive NCs and promotes their potential application in magnetoluminescence and novel optoelectronic devices.

3.
Angew Chem Int Ed Engl ; : e202404629, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845560

RESUMO

Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized and characterized a  pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively). Single-crystal X-ray diffraction analysis revealed that Au8M1 consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site . Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2%) during eCO2RR than that of Au8Ag1 (FECO; ~33.1%). DFT demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.

4.
Fundam Res ; 4(1): 63-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933845

RESUMO

Developing new approaches to fulfill the enantioseparation of nanocluster racemates and construct cluster-based nanomaterials with optical activity remains highly desired in cluster science, because it is an essential prerequisite for fundamental research and extensive applications of these nanomaterials. We herein propose a strategy termed "active-site exposing and partly re-protecting" to trigger the symmetry breaking of highly symmetrical nanoclusters and to render cluster crystals optically active. The vertex PPh3 of the symmetrical Ag29(SSR)12(PPh3)4 (SSR = 1, 3-benzenedithiol) nanocluster was firstly dissociated in the presence of counterions with large steric hindrance, and then the exposed Ag active sites of the obtained Ag29(SSR)12 nanocluster were partly re-protected by Ag+, yielding an Ag29(SSR)12-Ag2 nanocluster with a symmetry-breaking construction. Ag29(SSR)12-Ag2 followed a chiral crystallization mode, and its crystal displayed strong optical activity, derived from CD and CPL characterizations. Overall, this work presents a new approach (i.e., active-site exposing and partly re-protecting) for the symmetry breaking of highly symmetrical nanoclusters, the enantioseparation of nanocluster racemates, and the achievement of highly optical activity.

5.
Nat Commun ; 15(1): 5351, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914548

RESUMO

Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.

6.
Nanoscale ; 16(24): 11513-11517, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38835330

RESUMO

Research on the stability of metal nanoclusters and their molecular/supramolecular chemistry has proceeded significantly independently thus far. We herein have demonstrated that the stability of a nanocluster-based system should be assessed from both the cluster individual aspect (i.e., the energy of the molecular conformer) and the cluster collective aspect (i.e., the energy of the supramolecular lattice). A pair of Au2Cu6 cluster polymorphs, including Au2Cu6-triclinic and Au2Cu6-trigonal, was developed here to reveal the energy and stability contributions of both cluster conformers and crystalline lattices to their total systems. This work hopefully promotes a comprehensive understanding of the stability of cluster-based nano-systems which is beneficial for their downstream applications.

7.
Nanoscale ; 16(21): 10318-10324, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38738311

RESUMO

The study of structural isomerism in copper nanoclusters has been relatively limited compared to that in gold and silver nanoclusters. In this work, we present the controlled synthesis and structures of two isomeric copper nanoclusters, denoted as Cu22-1 and Cu22-2, whose compositions were determined to be Cu22(SePh)10(Se)6(P(Ph-4F)3)8 through single-crystal X-ray diffraction (SCXRD). The structural isomerism of Cu22-1 and Cu22-2 arises from the different arrangements of a few Cu(SeR)(PR3) motifs on the surface structure. These subtle changes in the surface structure also influence the distortion of the core and the spatial arrangement of the clusters, and affect the electronic structure. Furthermore, due to their distinct structures, Cu22-1 and Cu22-2 exhibit different catalytic properties in the copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). Notably, Cu22-1 demonstrates efficient catalytic activity for photoinduced AAC, achieving a yield of 90% within 1 hour. This research contributes to the understanding of structural isomerism in copper nanoclusters and offers insights into the structure-function relationship in these systems.

8.
Inorg Chem ; 63(19): 8775-8781, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696247

RESUMO

The atomic precision of the subnanometer nanoclusters has provided sound proof on the structural correlation of metal complexes and larger-sized metal nanoparticles. Herein, we report the synthesis, crystallography, structural characterization, electrochemistry, and optical properties of a 133-atom intermetallic nanocluster protected by 57 thiolates (3-methylbenzenethiol, abbreviated as m-MBTH) and 3 chlorides, with the formula of Ag125Cu8(m-MBT)57Cl3. This is the largest Ag-Cu bimetallic cluster ever reported. Crystallographic analysis revealed that the nanocluster has a three-layer concentric core-shell structure, Ag7@Ag47@Ag71Cu8S57Cl3, and the Ag54 metal kernel adopts a D5h symmetry. The nuclei number is between that of the previously reported large silver cluster [Ag136(SR)64Cl3Ag0.45]- and the large silver-rich cluster Au130-xAgx(SR)55 (x = 98). All these three clusters bear a similar metallic core structure, while the main structural difference lies in the shell motif structures. Electron counting revealed an open electron shell with 73 delocalized electrons, which was verified by the electron paramagnetic resonance analysis. The DPV electrochemical measurement indicates a multielectron state quantization double-layer charging shape and single-electron sequential charging and discharging characteristic of the AgCu alloy cluster. In addition, the open-hole Z-scan test reveals the nonlinear optical absorption (2-3 optical absorption in the NIR-II/III region) of Ag125Cu8 nanoclusters.

9.
Chem Sci ; 15(13): 4853-4859, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550675

RESUMO

Excellent luminescence properties and unique chiral structures enable nanoclusters to be a novel class of circularly polarized luminescence (CPL) materials, and their precise structures facilitate the clarification of structure-activity relationships. However, efficiently preparing nanoclusters with CPL properties is still a great challenge. In this work, the luminescent properties as well as the molecular symmetry were simultaneously manipulated to transform the centrosymmetric Au14Cd1 into a chiral Au12Cd2 nanocluster, which has CPL properties. In detail, Cd doping and chiral-ligand exchange were performed simultaneously on the Au14Cd1 nanocluster to realize its photoluminescence enhancement and chiral-framework construction by increasing the alloying degree which is defined as deep-alloying and chiral ligand induction at the same time, resulting in the formation of an Au12Cd2 nanocluster with CPL properties. Further investigations revealed an increased alloying degree in the structure-maintained M6 kernel of Au12Cd2, which results in a 15-fold enhancement in quantum yield.

10.
Org Lett ; 26(12): 2387-2392, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38488192

RESUMO

[2.2]Paracyclophane-fused heterocycles represent an important scaffold. Traditional approaches often suffer from tedious synthetic routes, and the development of catalytic synthesis of them remains in its infancy. Herein, by employing highly strained aryne intermediates as partners, we have developed a concise protocol by palladium-catalyzed C-H activation/annulation from [2.2]paracyclophanecarboxamide substrates. [2.2]Paracyclophane-fused quinolinone products are obtained in good yields (up to 84%). Furthermore, the utility of the process has been shown through the synthesis of [2.2]paracyclophane-fused heterocyclic catalysts.

11.
ACS Nano ; 18(8): 6591-6599, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38305198

RESUMO

The atomic precision of sub-nanometer-sized metal nanoclusters makes it possible to elucidate the kinetics of metal nanomaterials from the molecular level. Herein, the size reduction of an atomically precise [Au23(CHT)16]- (HCHT = cyclohexanethiol) cluster upon ligand exchange with HSAdm (1-adamantanethiol) has been reported. During the 16 h conversion of [Au23(CHT)16]- to Au16(SR)12, the neutral 6e Au21(SR)15, and its 1e-reduction state, i.e. the 5e, cationic radical, [Au21(SR)15]+, are active intermediates to account for the formation of thermodynamically stable Au16 products. The combination of spectroscopic monitoring (with UV-vis and ESI-MS) and DFT calculations indicates the preferential size-reduction on the corner Au atoms on the core surface and the terminal Au atoms on longer AunSn+1 staples. This study provides a reassessment on the electronic state of the Au21 structure and highlights the single electron transfer processes in cluster systems and thus the importance of the EPR analysis on the mechanistic issues.

12.
Angew Chem Int Ed Engl ; 63(12): e202317995, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38191987

RESUMO

Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.

13.
Nat Commun ; 15(1): 251, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177173

RESUMO

Colorful circularly polarized luminescence materials are desired for 3D displays, information security and asymmetric synthesis, in which single-emitted materials are ideal owing to self-absorption avoidance, evenly entire-visible-spectrum-covered photon emission and facile device fabrication. However, restricted by the synthesis of chiral broad-luminescent emitters, the realization and application of high-performing single-emitted full-color circularly polarized luminescence is in its infancy. Here, we disclose a single-emitted full-color circularly polarized luminescence system (spiral full-color emission generator), composed of whole-vis-spectrum emissive quantum dots and chiral liquid crystals. The system achieves a maximum luminescence dissymmetry factor of 0.8 and remains an order of 10-1 in visible region by tuning its photonic bandgap. We then expand it to a series of desired customized-color circularly polarized luminescence, build chiral devices and further demonstrate the working scenario in the photoinduced enantioselective polymerization. This work contributes to the design and synthesis of efficient chiroptical materials, device fabrication and photoinduced asymmetric synthesis.

14.
J Org Chem ; 89(3): 1719-1726, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38204281

RESUMO

As an interim paradigm for the catalysts between those based on more conventional mononuclear molecular Pd complexes and Pdn nanoparticles widely used in organic synthesis, polynuclear palladium clusters have attracted great attention for their unique reactivity and electronic properties. However, the development of Pd cluster catalysts for organic transformations and mechanistic investigations is still largely unexploited. Herein, we disclose the use of trinuclear palladium (Pd3Cl) species as an active catalyst for the direct C-H α-arylation of benzo[b]furans with aryl iodides to afford 2-arylbenzofurans in good yields under mild conditions. With this method, broad substrate adaptability was observed, and several drug intermediates were synthesized in high yields. Mechanistic studies indicated that the Pd3 core most likely remained intact throughout the reaction course.

15.
Chem Commun (Camb) ; 60(10): 1337-1340, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197463

RESUMO

In this work, a gold nanocluster [Au14(2-SAdm)9(Dppe)2]+ was synthesized and structurally determined by X-ray crystallography. The crystals of this cluster exhibit a 50-fold enhancement in quantum yield (5.05% for crystals) compared with its solution. Crystallographic analysis reveals that the weak intermolecular interactions (C-H⋯π, π⋯π) can inhibit the molecular vibration and thus generate the crystallization-induced emission enhancement phenomenon.

16.
Nanoscale ; 16(4): 1526-1538, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38168796

RESUMO

Metal clusters have distinct features from single atom and nanoparticle (>1 nm) catalysts, making them effective catalysts for various heterogeneous reactions. Nevertheless, the ambiguity and complexity of the catalyst structure preclude in-depth mechanistic studies. The evolution of metal species during synthesis and reaction processes represents another challenge. One effective solution is to precisely control the structure of the metal cluster, thus offering a well-defined pre-catalyst. The well-defined chemical formula and configurations make atomically precise metal nanoclusters optimal choices. To fabricate an atomically precise metal nanocluster-based heterogeneous catalyst with enhanced performance, careful structural design of both the nanocluster and support material, an effective assembling technique, and a pre-treatment method for these hybrids need to be developed. In this review, we summarize recent advances in in the development of heterogeneous catalysts using atomically precise gold and alloy gold nanoclusters as precursors. We will begin with a brief introduction to the structural properties of atomically precise nanoclusters and structure determination of cluster/support hybrids. We will then introduce heterogeneous catalysts prepared from medium size (tens to hundreds of metal atoms) and low nuclearity nanoclusters. We will illustrate how ligand modification, support-cluster interaction, hybrid fabrication, and heteroatom (Pt, Pd Ag, Cu, Cd, Fe) introduction affect the structural properties and pretreatment/reaction-induced structural evolution of gold nanocluster pre-catalysts. Lastly, we will highlight the synthetic method of NCs@MOF hybrids and their effectiveness in circumventing the adverse cluster structural evolution. These findings are expected to shed light on the structure-activity relationship studies and future catalyst design strategies using atomically precise metal nanocluster pre-catalysts.

17.
ACS Nano ; 18(2): 1555-1562, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166168

RESUMO

Studying the interactions of atomically precise metal nanoclusters in their assembly systems is of great significance in the nanomaterial research field, which has attracted increasing interest in the last few decades. Herein, we report the cocrystallization of two oppositely charged atomically precise metal nanoclusters in one unit cell: [Au1Ag24(SR)18]- ((AuAg)25 for short) and [AuxAg27-x(Dppf)4(SR)9]2+ (x = 10-12; (AuAg)27 for short) with a 1:1 ratio. (AuAg)27 could maintain its structure in the presence of (AuAg)25, whether in the crystalline and the solution state, while the metastable (AuAg)27 component underwent a spontaneous transformation to (AuAg)16(Dppf)2(SR)8 after dissociating the (AuAg)25 component from this cocrystal, demonstrating the "parasitism" relationship of the (AuAg)27 component over (AuAg)25 in this dual-cluster system. This work enriches the family of cluster-based assemblies and elucidates the delicate relationship between nanoparticles of cocrystals.

18.
Angew Chem Int Ed Engl ; 63(4): e202317471, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38072830

RESUMO

Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.

19.
Adv Sci (Weinh) ; 11(7): e2307085, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064120

RESUMO

Herein, a remarkable achievement in the synthesis and characterization of an atomically precise copper-hydride nanocluster, [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- via a mild one-pot reaction is presented. Through X-ray crystallography analysis, it is revealed that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits a unique shell-core-shell structure. The inner Cu29 kernel is composed of three twisted Cu13 units, connected through Cu4 face sharing. Surrounding the metal core, two Cu6 metal shells, resembling a protective sandwich structure are observed. This arrangement, along with intracluster π···π interactions and intercluster C─H···F─C interactions, contributes to the enhanced stability of [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- . The presence, number, and location of hydrides within the nanocluster are established through a combination of experimental and density functional theory investigations. Notably, the addition of a phosphine ligand triggers a fascinating nanocluster-to-nanocluster transformation in [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- , resulting in the generation of two nanoclusters, [Cu14 (SC6 H3 F2 )3 (PPh3 )8 H10 ]+ and [Cu13 (SC6 H3 F2 )3 (P(PhF)3 )7 H10 ]0 . Furthermore, it is demonstrated that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits catalytic activity in the hydrogenation of nitroarenes. This intriguing nanocluster provides a unique opportunity to explore the assembly of M13 units, similar to other coinage metal nanoclusters, and investigate the nanocluster-to-nanocluster transformation in phosphine and thiol ligand co-protected copper nanoclusters.

20.
Small ; 20(22): e2309226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126680

RESUMO

Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads, and oxophilic metal Bi facilitates the OHads, thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA