RESUMO
Mesenchymal stromal cells (MSCs) are believed to migrate to injury sites, release chemical attractants, and either recruit local stem cells or modulate the immune system positively. Although MSCs are highly desired for their potential to reduce inflammation and promote tissue regeneration, their limited lifespan restricts their applications. This study presents a simple approach for protecting MSCs with epigallocatechin-3-gallate (EGCG) and magnesium (Mg) based metal-organic framework coatings (E-Mg@MSC). The layer strengthens MSCs resistant to harmful stresses and creates a favorable microenvironment for repair by providing Mg to facilitate MSCs' osteogenic differentiation and using EGCG to neutralize excessive reactive oxygen species (ROS). E-Mg@MSC serves as a treatment for hematopoietic injury induced by ionizing radiation (IR). Coated MSCs exhibit sustained secretion of hematopoietic growth factors and precise homing to radiation-sensitive tissues. In vivo studies show substantial enhancement in hematopoietic system recovery and multi-organ protection. Mechanistic investigations suggest that E-Mg@MSC mitigates IR-induced ROS, cell apoptosis, and ferroptosis, contributing to reduced radiation damage. The system represents a versatile and compelling strategy for cell-surface engineering with functional materials to advance MSCs therapy.
RESUMO
Strawberries are mainly propagated by stolons, which can be divided into monopodial and sympodial types. Monopodial stolons consistently produce ramets at each node following the initial single dormant bud, whereas sympodial stolons develop a dormant bud before each ramet. Sympodial stolon encompasses both dormant buds and ramet buds, making it suitable for studying the formation mechanism of different stolon types. In this study, we utilized sympodial stolons from Fragaria nilgerrensis as materials and explored the mechanisms underlying sympodial stolon development through transcriptomic and phytohormonal analyses. The transcriptome results unveiled that auxin, cytokinin, and sugars likely act as main regulators. Endogenous hormone analysis revealed that the inactivation of auxin could influence bud dormancy. Exogenous cytokinin application primarily induced dormant buds to develop into secondary stolons, with the proportion of ramet formation being very low, less than 10%. Furthermore, weighted gene co-expression network analysis identified key genes involved in ramet formation, including auxin transport and response genes, the cytokinin activation gene LOG1, and glucose transport genes SWEET1 and SFP2. Consistently, in vitro cultivation experiments confirmed that glucose enhances the transition of dormant buds into ramets within two days. Collectively, cytokinin and glucose act as dormant breakers, with cytokinin mainly driving secondary stolon formation and glucose promoting ramet generation. This study improved our understanding of stolon patterning and bud development in the sympodial stolon of strawberries.
RESUMO
BACKGROUND: Negative energy balance (NEB) typically occurs in dairy cows after delivery. Cows with a high yield are more likely to experience significant NEB. This type of metabolic imbalance could cause ketosis, which is often accompanied by a decline in reproductive performance. However, the molecular mechanisms underlying NEB have yet to be fully elucidated. During excessive NEB, the body fat is extensively broken down, resulting in the abnormal accumulation of non-esterified fatty acids (NEFAs), represented by palmitic acid (PA), within the uterus. Such an abnormal accumulation has the potential to damage bovine endometrial epithelial cells (BEECs), while the molecular mechanisms underlying its involvement in the PA-induced injury of BEECs remains poorly understood. Melatonin (MT) is recognized for its regulatory role in maintaining the homeostasis of mitochondrial reactive oxygen species (mitoROS). However, little is known as to whether MT could ameliorate the damage incurred by BEECs in response to PA and the molecular mechanism involved. RESULTS: Analysis showed that 0.2 mmol/L PA stress increased the level of cellular and mitochondrial oxidative stress, as indicated by increased reactive oxygen species (ROS) level. In addition, we observed mitochondrial dysfunction, including abnormal mitochondrial structure and respiratory function, along with a reduction in mitochondrial membrane potential and mitochondrial copy number, and the induction of apoptosis. Notably, we also observed the upregulation of autophagy proteins (PINK, Parkin, LC3B and Ubiquitin), however, the P62 protein was also increased. As we expected, 100 µmol/L of MT pre-treatment attenuated PA-induced mitochondrial ROS and restored mitochondrial respiratory function. Meanwhile, MT pretreatment reversed the upregulation of P62 induced by PA and activated the AMPK-mTOR-Beclin-1 pathway, contributing to an increase of autophagy and decline apoptosis. CONCLUSIONS: Our findings indicate that PA can induce mitochondrial dysfunction and enhance autophagy in BEECs. In addition, MT is proved to not only reduce mitochondrial oxidative stress but also facilitate the clearance of damaged mitochondria by upregulating autophagy pathways, thereby safeguarding the mitochondrial pool and promoting cellular viability. Our study provides a better understanding of the molecular mechanisms underlying the effect of an excess of NEB on the fertility outcomes of high yielding dairy cows.
RESUMO
Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1ß (IL-ß), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.
RESUMO
The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy. In this study, the stemness and functionality of adipose stem cells derived from type 1 diabetic donors (T1DM-ASC) were enhanced by treatment with Cu(II)-baicalein microflowers (Cu-MON). After treatment with Cu-MON, T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion. Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC (CMTA), some genes were also expressed in HUVEC, Myoblast, Myofibroblast, and Vascular Smooth Muscle cells, inferring the common role of these cell types. In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors (ND-ASC) at a 15% cell dose, greatly reducing the treatment cost. Taken together, these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes, including paracrine effects.
RESUMO
BACKGROUND: Enteroviruses-infected hand, foot, and mouth disease (HFMD) seriously threatens human health. This study aimed to analyze the research status, hotspots, and frontiers of HFMD. METHODS: Publications on HFMD between January 1, 2006, and January 31, 2023, were retrieved from the Web of Science Core database. Bibliometric tools, including CiteSpace, VOSviewer, R package "Bibiometrix," SCImago Graphica, and Charticulator, were utilized to analyze and visualize the data. RESULTS: A total of 1860 articles from 424 journals, involving 8815 authors from 64 countries and 1797 institutions were analyzed. The number of studies on HFMD has shown an increasing trend over the past 18 years, with an annual increase observed since 2006, which is particularly prominent after 2010. Research in this field has centered on the Asian region. Notably, the research hotspots were mainly focused on vaccines, epidemiology, and pathogenesis of HFMD. Among the researchers in this field, Zhang Yong emerged as the most prolific author, while Xu Wenbo had the most significant influence. The Chinese Academy of Sciences was the most productive institution, and China was the most productive country for HFMD research. CONCLUSION: By bibliometric analysis, researchers in the HMFD field can efficiently identify and visually represent their research focus and limitations. In the future, it is crucial to maintain ongoing surveillance of HFMD outbreaks and their pathogenic changes. Additionally, future research should extensively explore the molecular mechanisms underlying Enteroviruses-induced HFMD with a focus on developing vaccines and therapies.
Assuntos
Bibliometria , Doença de Mão, Pé e Boca , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Pesquisa Biomédica/estatística & dados numéricos , Pesquisa Biomédica/tendênciasRESUMO
BACKGROUND: Although AMP-activated protein kinase (AMPK) has been extensively studied in cellular processes, the understanding of its substrates, downstream functions, contributions to cell fate and colorectal cancer (CRC) progression remains incomplete. PURPOSE: The aim of this study was to investigate the effects and mechanisms of naringenin on CRC. METHODS: The biological and cellular properties of naringenin and its anticancer activity were evaluated in CRC. In addition, the effect of combined treatment with naringenin and 5-fluorouracil on tumor growth in vitro and in vivo was evaluated. RESULTS: The present study found that naringenin inhibits the proliferation of CRC and promote its apoptosis. Compared with the naringenin group, naringenin combined with 5-fluorouracil had significant effect on inhibiting cell proliferation and promoting its apoptosis. It is showed that naringenin activates AMPK phosphorylation and mitochondrial fusion in CRC. Naringenin combined with 5-fluorouracil significantly reduces cardiotoxicity and liver damage induced by 5-fluorouracil in nude mice bearing subcutaneous CRC tumors, and attenuates colorectal injuries in azoxymethane/DSS dextran sulfate (AOM/DSS)-induced CRC. The combination of these two drugs alters mitochondrial function by increasing reactive oxygen species (ROS) levels and decreasing the mitochondrial membrane potential (MMP), thereby stimulating AMPK/mTOR signaling. Mitochondrial dynamics are thereby regulated by activating the AMPK/p-AMPK pathway, and mitochondrial homeostasis is coordinated through increased mitochondrial fusion and reduced fission to activate apoptosis in cancer cells. CONCLUSIONS: Our data suggest that naringenin is important for inhibiting CRC proliferation, possibly through the AMPK pathway, to regulate mitochondrial function and induce apoptosis in CRC.
Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Colorretais , Flavanonas , Fluoruracila , Mitocôndrias , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Flavanonas/farmacologia , Fluoruracila/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.
Assuntos
Proliferação de Células , Fator de Crescimento Epidérmico , Sistema de Sinalização das MAP Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Tirosina Fosfatases não Receptoras , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismoRESUMO
Isorhamnetin (ISO) is a phenolic compound belonging to flavonoid family, showcasing important in vitro pharmacological activities such as antitumor, anti-inflammation, and organ protection. ISO is predominantly extracted from Hippophae rhamnoides L. This plant is well-known in China and abroad because of its "medicinal and food homologous" characteristics. As a noteworthy natural drug candidate, ISO has received considerable attention in recent years owing to its low cost, wide availability, high efficacy, low toxicity, and minimal side effects. To comprehensively elucidate the multiple biological functions of ISO, particularly its antitumor activities and other pharmacological potentials, a literature search was conducted using electronic databases including Web of Science, PubMed, Google Scholar, and Scopus. This review primarily focuses on ISO's ethnopharmacology. By synthesizing the advancements made in existing research, it is found that the general effects of ISO involve a series of in vitro potentials, such as antitumor, protection of cardiovascular and cerebrovascular, anti-inflammation, antioxidant, and more. This review illustrates ISO's antitumor and other pharmacological potentials, providing a theoretical basis for further research and new drug development of ISO.
RESUMO
HLA-DPB1*03:01:29 differs from HLA-DPB1*03:01:01:01 by one nucleotide in exon 2.
Assuntos
Cadeias beta de HLA-DP , Nucleotídeos , Humanos , Alelos , Análise de Sequência de DNA , ChinaRESUMO
BACKGROUND: Bruton's tyrosine kinase inhibitors (BTKis) are targeted treatments for B-cell tumors but have significant side effects. This study assesses and contrasts the side effects of BTKis alone and its four combination therapies. RESEARCH DESIGN AND METHODS: The reporting odds ratio (ROR) was used to analyze the data on three BTKis monotherapies and combinations of ibrutinib with rituximab, obinutuzumab, venetoclax, and lenalidomide in the FDA Adverse Event Reporting System (FAERS) database up to December 2022. RESULTS: We analyzed the top 20 PTs for each treatment regimen. In monotherapies, atrial fibrillation (ROR (95% CI): 9.88 (9.47-10.32)) in zanubrutinib and rash (6.97 (5.42-8.98)) in acalabrutinib had higher associations. In combinations, infection (6.86 (6.11-7.70)), atrial fibrillation (27.96 (22.61-34.58)) and myelosuppression (10.09 (8.89-11.46)) were vital signals when ibrutinib was combined with obinutuzumab, and pyrexia (4.22 (2.57-6.93)) had a high signal value when combined with lenalidomide. Hemorrhage had a lower signal value when combined with venetoclax compared to ibrutinib alone (2.50 (2.18-2.87) vs 3.60 (3.52-3.68)). CONCLUSIONS: The ibrutinib-obinutuzumab combo has the highest risk of infection, atrial fibrillation, and myelosuppression, and the ibrutinib-lenalidomide combo has the highest risk of pyrexia. However, the ibrutinib-venetoclax combo has a lower risk of hemorrhage than monotherapy.
Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Tirosina Quinase da Agamaglobulinemia , Farmacovigilância , Humanos , Adenina/efeitos adversos , Adenina/análogos & derivados , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes , Bases de Dados Factuais , Lenalidomida/efeitos adversos , Piperidinas/efeitos adversos , Sulfonamidas/efeitos adversos , Estados Unidos , United States Food and Drug AdministrationRESUMO
OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.
Assuntos
Antineoplásicos , Glioblastoma , Humanos , Ratos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Zeaxantinas/farmacologia , Caspase 3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento CelularRESUMO
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
RESUMO
Aim: Daratumumab, a CD38 monoclonal antibody, has been widely used in patients with multiple myeloma. Although a variety of adverse events have been reported, consciousness impairment has not been reported yet. We report a case of encephalopathy associated with daratumumab. Case presentation: A 57-year-old male, diagnosed with relapsed multiple myeloma, was treated with daratumumab. He developed a loss of consciousness after the first administration. Cerebral spinal fluid and magnetic resonance imaging of the brain suggested encephalopathy. Conclusion: It is recommended to be aware of rare but life threatening side effects of daratumumab. We present a case of rare encephalopathy characterized by consciousness disorder associated with daratumumab, which was successfully resolved on prompt institution of steroids, although the mechanism was unknown.
Daratumumab is a drug. It is used to treat multiple myeloma. Many patients use this drug. It has many side effects. But consciousness disorder is rare. A 57-year-old male was diagnosed with multiple myeloma. He was treated with daratumumab. He became unconscious after this treatment. Steroids helped his recovery.
Assuntos
Encefalopatias , Mieloma Múltiplo , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Encefalopatias/etiologia , Encefalopatias/induzido quimicamente , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológicoRESUMO
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
RESUMO
Arterial injury makes the tissue in a state of high oxidative stress. At the same time, abnormal lipid metabolism can further lead to bleeding and thrombosis. Therefore, the anti-inflammatory and anti-oxidant polyphenol, EGCG was organically complexed with Fe3+ to form a metal-phenolic framework carrier. And the antihyperlipidemic drug, atorvastatin (ATV) was loaded into the carrier to enhance the bioavailability, and simultaneously alleviate the oxidative stress of the inflammatory site and abnormal lipid metabolism. The results confirmed that the obtained material EGCG-Fe-ATV had good biocompatibility and biosafety effect. In addition, EGCG-Fe-ATV showed outstanding anti-inflammatory, anti-oxidant and lipid-lowering properties. These therapeutic outcomes of EGCG-Fe-ATV were achieved by reducing systemic and local oxidative stress and inflammation, alleviating inflammatory cell infiltration in plaques, and modulating lipid synthesis and transferase to alter cholesterol transport. In conclusion, the combination of metal-phenolic capsules with ATV provides a new strategy for reshaping the oxidative microenvironment of atherosclerosis.
Assuntos
Antioxidantes , Aterosclerose , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cápsulas , Aterosclerose/tratamento farmacológico , Estresse Oxidativo , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Anti-Inflamatórios/farmacologiaRESUMO
AIMS: Phenotypic transition of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic state is involved in the development of cardiovascular diseases, including atherosclerosis, hypertension, and post-angioplasty restenosis. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) has been implicated in multiple cellular processes, however, its role in VSMC biology remains undetermined. The objective of this study was to determine the role of PRMTs in VSMC phenotypic switch and vascular remodelling after injury. METHODS AND RESULTS: Our results show that PRMT5 is the most abundantly expressed PRMT in human aortic SMCs, and its expression is up-regulated in platelet-derived growth factor (PDGF)-stimulated VSMCs, human atherosclerotic lesions, and rat carotid arteries after injury, as determined by western blot and immunohistochemical staining. PRMT5 overexpression inhibits the expression of SMC marker genes and promotes VSMC proliferation and migration, while silencing PRMT5 exerts the opposite effects. Mechanistically, we found that PRMT5 overexpression led to histone di-methylation of H3R8 and H4R3, which in turn attenuates acetylation of H3K9 and H4, thus limiting recruitment of the SRF/myocardin complexes to the CArG boxes of SMC marker genes. Furthermore, both SMC-specific deletion of PRMT5 in mice and local delivery of lentivirus expressing shPRMT5 to rat carotid arteries significantly attenuated neointimal formation after injury. Likewise, pharmacological inhibition of PRMT5 by EPZ015666 markedly inhibited carotid artery ligation-induced neointimal formation in mice. CONCLUSIONS: Our results identify PRMT5 as a novel regulator in VSMC phenotypic switch and suggest that inhibition of PRMT5 may represent an effective therapeutic strategy for proliferative vascular diseases.
Assuntos
Aterosclerose , Músculo Liso Vascular , Proteína-Arginina N-Metiltransferases , Animais , Humanos , Camundongos , Ratos , Arginina , Aterosclerose/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Epigênese Genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neointima , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismoRESUMO
SPHERE is a large multidisciplinary project to research and develop a sensor network to facilitate home healthcare by activity monitoring, specifically towards activities of daily living. It aims to use the latest technologies in low powered sensors, internet of things, machine learning and automated decision making to provide benefits to patients and clinicians. This dataset comprises data collected from a SPHERE sensor network deployment during a set of experiments conducted in the 'SPHERE House' in Bristol, UK, during 2016, including video tracking, accelerometer and environmental sensor data obtained by volunteers undertaking both scripted and non-scripted activities of daily living in a domestic residence. Trained annotators provided ground-truth labels annotating posture, ambulation, activity and location. This dataset is a valuable resource both within and outside the machine learning community, particularly in developing and evaluating algorithms for identifying activities of daily living from multi-modal sensor data in real-world environments. A subset of this dataset was released as a machine learning competition in association with the European Conference on Machine Learning (ECML-PKDD 2016).
Assuntos
Atividades Cotidianas , Monitorização Ambulatorial , Humanos , Algoritmos , Aprendizado de MáquinaRESUMO
The Special Issue "Signal Processing and Machine Learning for Smart Sensing Applications" focused on the publication of advanced signal processing methods by means of state-of-the-art machine learning technologies for smart sensing applications [...].
RESUMO
Objective: The CHA2DS2-VASc score, a system which has been initially recommended for the assessment of thromboembolic risk in patients with atrial fibrillation (AF), arouses attention in the field of adverse coronary events. The purpose of this study was to explore the predictive value of preprocedural CHA2DS2-VASc score on ISR in patients after drug-eluting stent (DES) implantation. Methods: To further investigate the relationship between CHA2DS2-VASc scores and ISR after DES, a retrospective study of DES was carried on. Additionally, the preoperative variables for the ISR and control groups were contrasted. Predictive factors were chosen using the optimal subset regression. We validate the model using internal validation. The prediction model was evaluated using the receiver operator characteristic (ROC) analysis. Results: We used a 3:7 ratio to create an experimental group and a validation group, and then ran a stepwise regression with the data from each of the two groups. The results showed that CHA2DS2-VASc score was an independent risk factor for ISR in both the experimental (p = 0.0139) and validation groups (p = 0.0014), and both had significant predictive value for ISR. The area of the ROC curve was greater than 0.5 in both groups (AUC = 0.78, 0.719, respectively) indicating that the model fit was good in both groups. Conclusion: The CHA2DS2-VASc score is a reliable predictor of in-stent restenosis (ISR) after DES implantation.