Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.203
Filtrar
2.
Phytomedicine ; 134: 155973, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39241384

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and relapsing disease marked by chronic tissue inflammation that alters the integrity and function of the gut, seriously impacting patient health and quality of life. Aucklandiae Radix (AR), known as Mu Xiang in Chinese, is a traditional Chinese medicine documented in Chinese Pharmacopoeia with effects of strengthening the intestine and stopping diarrhea. However, the potential of AR in treating intestinal inflammation and its underlying mechanism have yet to be further elucidated. PURPOSE: The objective of this study was to explore the protective effect and the potential mechanism attributable to AR for treating ulcerative colitis (UC). STUDY DESIGN AND METHODS: A murine model of UC was constructed using dextran sulfate sodium (DSS) to examine the therapeutic potential of AR in alleviating inflammation and modulating the immune response. Advanced techniques such as photocrosslinking target fishing technique, click chemistry, Western blot analysis, real-time quantitative PCR, flow cytometry, immunofluorescence, and immunohistochemistry were employed to unveil the therapeutic mechanism of AR for treating IBD. RESULTS: AR decreased disease activity index (DAI) score to alleviate the course of IBD through ameliorating intestinal barrier function in DSS-induced mice. Furthermore, AR suppressed NF-κB and NLRP3 pathways to reduce the release of pro-inflammatory factors interleukin-6 and 1ß (IL-6 and IL-1ß) and tumor necrosis factor α (TNF-α), allowing to alleviate the inflammatory response. Flow cytometry revealed that AR could reduce the accumulation of intestinal macrophages and neutrophils, maintaining intestinal immune balance by regulating the ratio of Treg to Th17 cells. It was worth noting that pyruvate kinase isozyme type M2 (PKM2) served as a potential target of AR using the photocrosslinking target fishing technology, which was further supported by cellular thermal shift assay (CETSA), drug affinity target stability (DARTS), and PKM2 knockdown experiments. CONCLUSION: AR targeted PKM2 to inhibit NF-κB and NLRP3 pathways, thereby modulating the inflammatory response and immunity to alleviate DSS-induced UC. These findings suggested the potential of AR in the treatment of UC and AR as a candidate for developing PKM2 regulators.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Piruvato Quinase , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Camundongos , Piruvato Quinase/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Masculino , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo
3.
Neuroimage Clin ; 43: 103663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39226701

RESUMO

Identifying biomarkers for computer-aided diagnosis (CAD) is crucial for early intervention of psychiatric disorders. Multi-site data have been utilized to increase the sample size and improve statistical power, while multi-modality classification offers significant advantages over traditional single-modality based approaches for diagnosing psychiatric disorders. However, inter-site heterogeneity and intra-modality heterogeneity present challenges to multi-site and multi-modality based classification. In this paper, brain functional and structural networks (BFNs/BSNs) from multiple sites were constructed to establish a joint multi-site multi-modality framework for psychiatric diagnosis. To do this we developed a hypergraph based multi-source domain adaptation (HMSDA) which allowed us to transform source domain subjects into a target domain. A local ordinal structure based multi-task feature selection (LOSMFS) approach was developed by integrating the transformed functional and structural connections (FCs/SCs). The effectiveness of our method was validated by evaluating diagnosis of both schizophrenia (SZ) and autism spectrum disorder (ASD). The proposed method obtained accuracies of 92.2 %±2.22 % and 84.8 %±2.68 % for the diagnosis of SZ and ASD, respectively. We also compared with 6 DA, 10 multi-modality feature selection, and 8 multi-site and multi-modality methods. Results showed the proposed HMSDA+LOSMFS effectively integrated multi-site and multi-modality data to enhance psychiatric diagnosis and identify disorder-specific diagnostic brain connections.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Masculino , Feminino , Adulto , Esquizofrenia/diagnóstico , Imageamento por Ressonância Magnética/métodos , Transtorno do Espectro Autista/diagnóstico , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Transtornos Mentais/diagnóstico , Adolescente , Diagnóstico por Computador/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-39307970

RESUMO

In recent years, rare-earth-based chalcogenides have gained attention promising materials in the field of infrared nonlinear optical (IR-NLO) applications owing to their exceptional physicochemical properties. However, they frequently encounter challenges such as adverse two-photon absorption and low laser-induced damage thresholds (LIDTs) caused by narrow optical band gaps (Eg), which limit their practical utility. In this study, we started with the centrosymmetric (CS) parent compound EuGa2S4 to develop two new noncentrosymmetric (NCS) Eu-based chalcogenides, namely, EuZnSiS4 and EuCdSiS4, employing a rational cross-substitution strategy. Despite having identical stoichiometry, both compounds crystallize in distinct NCS orthorhombic space groups [Fdd2 (no. 43) vs Ama2 (no. 40)], as confirmed by single-crystal structure analysis. Their crystal structures feature highly distorted tetrahedral motifs interconnected via corner-sharing, forming unique two-dimensional layers that host Eu2+ cations. Furthermore, both compounds exhibit robust phase-matching second-harmonic generation (SHG) intensities of 1.5 × AgGaS2 for EuZnSiS4 and 2.8 × AgGaS2 for EuCdSiS4 under 2050 nm excitation. They also demonstrate high LIDTs (approximately 14-17 × AgGaS2), wide Eg (>2.5 eV), and transparency windows extending up to 18.2 µm. Particularly noteworthy, EuCdSiS4 stands out as a pioneering example in the Eu-based IR-NLO system for successfully combining a broad Eg (>2.56 eV, equivalent to that of AgGaS2) with a significant SHG effect (>1.0 × AgGaS2) simultaneously. Structural analyses and theoretical insights underscore that the reasonable combination of asymmetric functional units plays a pivotal role in driving the CS-to-NCS structural transformation and enhancing the NLO and linear optical properties of these Eu-based chalcogenides. This study presents a promising chemical pathway for advancing rare-earth-based functional materials and suggests exciting opportunities for their future applications in IR-NLO technologies.

5.
Neurobiol Dis ; 201: 106659, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243826

RESUMO

AIM: Parkinson's disease (PD) tremor is associated with dysfunction in the basal ganglia (BG), cerebellum (CB), and sensorimotor networks (SMN). We investigated tremor-related static functional network connectivity (SFNC) and dynamic functional network connectivity (DFNC) in PD patients. METHODS: We analyzed the resting-state functional MRI data of 21 tremor-dominant Parkinson's disease (TDPD) patients and 29 healthy controls. We compared DFNC and SFNC between the three networks and assessed their associations with tremor severity. RESULTS: TDPD patients exhibited increased SFNC between the SMN and BG networks. In addition, they spent more mean dwell time (MDT) in state 2, characterized by sparse connections, and less MDT in state 4, indicating stronger connections. Furthermore, enhanced DFNC between the CB and SMN was observed in state 2. Notably, the MDT of state 2 was positively associated with tremor scores. CONCLUSION: The enhanced dynamic connectivity between the CB and SMN in TDPD patients suggests a potential compensatory mechanism. However, the tendency to remain in a state of sparse connectivity may contribute to the severity of tremor symptoms.

6.
Proc Natl Acad Sci U S A ; 121(39): e2410968121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284065

RESUMO

Hydrogen, the lightest and most abundant element in the universe, plays essential roles in a variety of clean energy technologies and industrial processes. For over a century, it has been known that hydrogen can significantly degrade the mechanical properties of materials, leading to issues like hydrogen embrittlement. A major challenge that has significantly limited scientific advances in this field is that light atoms like hydrogen are difficult to image, even with state-of-the-art microscopic techniques. To address this challenge, here, we introduce Atom-H, a versatile and generalizable machine learning-based framework for imaging hydrogen atoms at the atomic scale. Using a high-resolution electron microscope image as input, Atom-H accurately captures the distribution of hydrogen atoms and local stresses at lattice defects, including dislocations, grain boundaries, cracks, and phase boundaries. This provides atomic-scale insights into hydrogen-governed mechanical behaviors in metallic materials, including pure metals like Ni, Fe, Ti and alloys like FeCr. The proposed framework has an immediate impact on current research into hydrogen embrittlement and is expected to have far-reaching implications for mapping "invisible" atoms in other scientific disciplines.

7.
Front Cardiovasc Med ; 11: 1375768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267804

RESUMO

Background: Cardioembolic Stroke (CS) and Atrial Fibrillation (AF) are prevalent diseases that significantly impact the quality of life and impose considerable financial burdens on society. Despite increasing evidence of a significant association between the two diseases, their complex interactions remain inadequately understood. We conducted bioinformatics analysis and employed machine learning techniques to investigate potential shared biomarkers between CS and AF. Methods: We retrieved the CS and AF datasets from the Gene Expression Omnibus (GEO) database and applied Weighted Gene Co-Expression Network Analysis (WGCNA) to develop co-expression networks aimed at identifying pivotal modules. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the shared genes within the modules related to CS and AF. The STRING database was used to build a protein-protein interaction (PPI) network, facilitating the discovery of hub genes within the network. Finally, several common used machine learning approaches were applied to construct the clinical predictive model of CS and AF. ROC curve analysis to evaluate the diagnostic value of the identified biomarkers for AF and CS. Results: Functional enrichment analysis indicated that pathways intrinsic to the immune response may be significantly involved in CS and AF. PPI network analysis identified a potential association of 4 key genes with both CS and AF, specifically PIK3R1, ITGAM, FOS, and TLR4. Conclusion: In our study, we utilized WGCNA, PPI network analysis, and machine learning to identify four hub genes significantly associated with CS and AF. Functional annotation outcomes revealed that inherent pathways related to the immune response connected to the recognized genes might could pave the way for further research on the etiological mechanisms and therapeutic targets for CS and AF.

8.
J Colloid Interface Sci ; 678(Pt B): 630-638, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39265335

RESUMO

Constructing local microenvironments is one of the important strategies to improve the electrocatalytic performances, such as in electrochemical CO2 reduction (ECR). However, effectively customizing these microenvironments remains a significant challenge. Herein, utilizing carbon nanotube (CNT) heterostructured semi-open Co-N2O2 catalytic configurations (Co-salophen), we have demonstrated the role of the local microenvironment on promoting ECR through regulating the location of hydroxyl groups. Concretely, compared with the maximum Faradaic efficiency (FE) of 62% for carbon monoxide (CO) presented by Co-salophen/CNT without a hydroxyl microenvironment, the designed Co-salophen-OH3/CNT, featuring hydroxyl groups at the Co-N2O2 structural opening, shows remarkable CO2-to-CO electroreduction activity across a wide potential window, with the FE of CO up to 95%. In particular, through the deuterium kinetic isotope experiments and theoretical calculations, we decoded that the hydroxyl groups act as a proton relay station, promoting the efficient transfer of protons to the Co-N2O2 active sites. The finding demonstrates a promising molecular design strategy for enhancing electrocatalysis.

9.
BMC Med Educ ; 24(1): 986, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256737

RESUMO

BACKGROUND: Case-based learning (CBL) utilizing three-dimensional (3D) printed hip joint models is a problem-solving teaching method that combines the tactile and visual advantages of 3D-printed models with CBL. This study aims to investigate the impact of integrating 3D printing with CBL on learning developmental dysplasia of the hip (DDH). METHODS: We conducted a prospective study from 2022 to 2023, including 120 fourth-year clinical medical students at Xuzhou Medical University. Students were randomly allocated into two groups of 60 participants each. The CBL group received conventional CBL teaching methods, while the 3D + CBL group utilized 3D-printed models in conjunction with CBL. Post-teaching, we analyzed and compared the theoretical and practical achievements of both groups. A questionnaire was designed to assess the impact of the educational approach on orthopedic surgery learning. RESULTS: The theory scores of the CBL group (62.88 ± 7.98) and 3D + CBL group (66.35 ± 8.85) were significantly different (t = 2.254, P = 0.026); the practical skills scores of the CBL group (57.40 ± 8.80) and 3D + CBL group (63.42 ± 11.14) were significantly different (t = 3.283, P = 0.001). The questionnaire results showed that the 3D + CBL group was greater than the CBL group in terms of hip fundamentals, ability to diagnose cases and plan treatments, interesting teaching content, willingness to communicate with the instructor and satisfaction. CONCLUSIONS: The integration of 3D printing with case-based learning has yielded positive outcomes in teaching DDH, providing valuable insights into the use of 3D-printed orthopedic models in clinical education.


Assuntos
Displasia do Desenvolvimento do Quadril , Impressão Tridimensional , Aprendizagem Baseada em Problemas , Humanos , Estudos Prospectivos , Displasia do Desenvolvimento do Quadril/cirurgia , Competência Clínica , Feminino , Educação de Graduação em Medicina/métodos , Modelos Anatômicos , Masculino , Estudantes de Medicina , Avaliação Educacional
10.
Reprod Biol Endocrinol ; 22(1): 105, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164729

RESUMO

BACKGROUND: Obesity is a global health issue with detrimental effects on various human organs, including the reproductive system. Observational human data and several lines of animal experimental data suggest that maternal obesity impairs ovarian function and early embryo development, but the precise pathogenesis remains unclear. METHODS: We established a high-fat diet (HFD)-induced obese female mouse model to assess systemic metabolism, ovarian morphology, and oocyte function in mice. For the first time, this study employed single-cell RNA sequencing to explore the altered transcriptomic landscape of preimplantation embryos at different stages in HFD-induced obese mice. Differential gene expression analysis, enrichment analysis and protein-protein interactions network analysis were performed. RESULTS: HFD-induced obese female mice exhibited impaired glucolipid metabolism and insulin resistance. The ovaries of HFD mice had a reduced total follicle number, an increased proportion of atretic follicles, and irregular granulosa cell arrangement. Furthermore, the maturation rate of embryonic development by in vitro fertilization of oocytes was significantly decreased in HFD mice. Additionally, the transcriptional landscapes of preimplantation embryos at different stages in mice induced by different diets were significantly distinguished. The maternal-to-zygotic transition was also affected by the failure to remove maternal RNAs and to turn off zygotic genome expression. CONCLUSIONS: HFD-induced obesity impaired ovarian morphology and oocyte function in female mice and further led to alterations in the transcriptional landscape of preimplantation embryos at different stages of HFD mice.


Assuntos
Dieta Hiperlipídica , Desenvolvimento Embrionário , Obesidade , Oócitos , Análise de Sequência de RNA , Análise de Célula Única , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Oócitos/metabolismo , Camundongos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Gravidez , Blastocisto/metabolismo
11.
Mil Med Res ; 11(1): 58, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164787

RESUMO

Robot-assisted surgery has evolved into a crucial treatment for prostate cancer (PCa). However, from its appearance to today, brain-computer interface, virtual reality, and metaverse have revolutionized the field of robot-assisted surgery for PCa, presenting both opportunities and challenges. Especially in the context of contemporary big data and precision medicine, facing the heterogeneity of PCa and the complexity of clinical problems, it still needs to be continuously upgraded and improved. Keeping this in mind, this article summarized the 5 stages of the historical development of robot-assisted surgery for PCa, encompassing the stages of emergence, promotion, development, maturity, and intelligence. Initially, safety concerns were paramount, but subsequent research and engineering advancements have focused on enhancing device efficacy, surgical technology, and achieving precise multi modal treatment. The dominance of da Vinci robot-assisted surgical system has seen this evolution intimately tied to its successive versions. In the future, robot-assisted surgery for PCa will move towards intelligence, promising improved patient outcomes and personalized therapy, alongside formidable challenges. To guide future development, we propose 10 significant prospects spanning clinical, research, engineering, materials, social, and economic domains, envisioning a future era of artificial intelligence in the surgical treatment of PCa.


Assuntos
Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos , Humanos , Masculino , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/história , Procedimentos Cirúrgicos Robóticos/tendências , Neoplasias da Próstata/cirurgia , Inteligência Artificial/tendências
12.
J Colloid Interface Sci ; 678(Pt A): 209-217, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39197364

RESUMO

Eu2+-doped near-infrared (NIR) emitting phosphors, known for their high efficiency, broadband emission and spectral tunability, have gained much attention. However, achieving efficient NIR emission based on Eu2+ remains a challenge due to the co-existence of Eu3+, especially in materials (i.e. garnets and apatites) containing trivalent lanthanide cations. In this study, a Eu2+ doped sulfureted NIR-emitting garnet phosphor Ca3(Sc, Eu)2Si3(O, S)12: Eu2+ is successfully designed and synthesized. Notably, a strategy for regulating the initial valence state of dopants is proposed by using prepared EuS instead of the conventional Eu2O3 as raw material, enhancing the NIR emission by 135 %. Moreover, a sulfuration strategy is further introduced to enhance the NIR-emitting intensity and internal quantum efficiency by 192 % and 167.8 %, and to improve thermal stability by 154 % at 120 °C. The luminescence origin of the unusual broadband NIR emission is re-examined through chemical unit co-substitution strategy by introducing [Al3+Hf4+] to replace [Sc3+Si4+] ion pairs. Meanwhile, the spectral regulation and the performance optimization mechanism are systematically discussed. Finally, a green light pumped NIR LED device with a photoelectric efficiency of 9.43 %@100 mA and output power of 22.74 mW@100 mA is fabricated, showing remarkable potential in nondestructive testing and biomedical imaging applications.

13.
Theriogenology ; 229: 16-22, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142066

RESUMO

Spermatogenesis in eukaryotes is a process that occurs within a very narrow temperature threshold, typically not exceeding 36 °C. SPO11 was isolated from the temperature-sensitive mutant receptor of Saccharomyces cerevisiae and is thought to be the only protein that functions during meiosis. This suggested that SPO11 may be the key protein that influenced the temperature of spermatogenesis not exceeding 36 °C. Elevated temperatures typically damage the spermatogenic cells. Birds have a core body temperature of 41-42 °C, and their testis are located inside their bodies, providing an alternative perspective to investigate the potential impact of temperature threshold on spermatogenesis. The objective of this study was to ascertain whether elevated ambient temperatures affect spermatogenesis in birds and whether SPO11 is the key gene affecting the temperature threshold for spermatogenesis. STRA8, SCP3, SPO11, γ-H2AX, and RAD51 were all crucial components in the process of meiotic initiation, synapsis, DNA double-strand break (DSB) induction, homologous chromosome crossover recombination, and repair of DSB. In this study, 39-day-old Japanese quail were subjected to heat stress (HS) at 38 °C for 8 h per day for 3 (3d HS) and 13 (13d HS) consecutive days and analyzed the expression of meiotic signaling molecules (STRA8, SCP3, SPO11, γ-H2AX, and RAD51) using molecular biology techniques, including Immunohistochemistry (IHC), Western Blot (WB), and Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). We found that spermatogenesis was normal in both groups exposed to HS. Meiotic signaling molecules were expressed normally in the 3d HS group. All detected signaling molecules were normally expressed in the 13d HS group, except for SPO11, which showed a significant increase in expression, indicating that SPO11 was temperature-sensitive. We examined the localized expression of each meiotic signaling molecule in quail testis, explored the temperature sensitivity of SPO11, and determined that quail testis can undergo normal spermatogenesis at ambient temperatures exceeding 36 °C. This study concluded that SPO11 is not the key protein influencing spermatogenesis in birds. These findings enhance our understanding of avian spermatogenesis.


Assuntos
Espermatogênese , Testículo , Animais , Masculino , Espermatogênese/fisiologia , Testículo/metabolismo , Temperatura Alta , Prófase Meiótica I/fisiologia , Coturnix/genética , Coturnix/fisiologia , Coturnix/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia
14.
J Control Release ; 373: 652-666, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089503

RESUMO

Androgenetic alopecia (AGA) is a non-fatal disease prevalent worldwide. However, mixed efficacy has been observed among different therapies for hair regrowth in AGA patients. Thus, a nano-platform with synergistic treatments based on a hybrid extracellular vesicle encapsulating gold nanoparticles (AuNPs) and finasteride (Hybrid/Au@Fi) was constructed through membrane fusion between hair follicle stem cell (HFSC)-derived extracellular vesicles and liposomes. These hybrid vesicles (HVs) not only fuel hair regrowth by providing cellular signals in extracellular vesicles, but also improve storage stability, follicle retention, and drug encapsulation efficiency (EE%) for finasteride inhibiting 5α-reductase, and nano-size AuNPs that simulate low-level laser therapy (LLLT) with similar photothermal effects in vitro. The EE% of finasteride in these HVs reached 45.33%. The dual administration of these extracellular vesicles and finasteride showed a strong synergistic effect on HFSCs in vitro. In an AGA mouse model, once-daily topical Hybrid/Au@Fi (115.07 ± 0.32 nm, -7.50 ± 1.68 mV) gel led to a faster transition of hair follicles (HFs) from the catagen to the anagen, increased hair regrowth coverage, and higher quality of regrowth hair, compared to once-daily 5% minoxidil treatment. Compared to topical minoxidil, the multifaceted synergistic therapy of Hybrid/Au@Fi through topical administration offers a new option for intractable AGA patients with low side effects.


Assuntos
Inibidores de 5-alfa Redutase , Alopecia , Vesículas Extracelulares , Finasterida , Ouro , Folículo Piloso , Nanopartículas Metálicas , Células-Tronco , Finasterida/administração & dosagem , Ouro/química , Ouro/administração & dosagem , Alopecia/terapia , Animais , Nanopartículas Metálicas/administração & dosagem , Células-Tronco/citologia , Inibidores de 5-alfa Redutase/administração & dosagem , Humanos , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cabelo/crescimento & desenvolvimento
15.
Sleep Med ; 122: 8-13, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098120

RESUMO

OBJECTIVES: Optimal sleep is crucial for developing and maintaining gifted children's cognitive abilities. However, only a few studies have explored the sleep profiles of gifted children and overlooked their internal variations. This study aimed to investigate subjective and object sleep profiles in school-aged gifted children with different levels of giftedness. METHODS: This study included 80 school-aged children (50 % male) aged 6-11 years. Giftedness was assessed using the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). Subjective and objective sleep were evaluated using the Children's Sleep Habits Questionnaire (CSHQ) and Actiwatch 2. RESULTS: The sample was divided into three groups based on their full scale intelligence quotient (IQ): 16 typically developing children (IQ < 130), 38 moderately gifted children (IQ: 130-145), and 26 highly gifted children (IQ > 145). The highly gifted children had the mildest sleep problems, particularly in sleep duration and daytime sleepiness. Moderately gifted children had the shortest subjective average sleep duration, while the three groups had no significant differences in Actiwatch-measured sleep variables. Furthermore, CSHQ total and daytime sleepiness subscale scores were negatively associated with the full scale IQ in gifted children after controlling for confounders including emotional and behavioral problems. CONCLUSIONS: Children with higher levels of giftedness experience fewer subjective sleep problems but have similar objective sleep parameters. It is imperative to implement tailored sleep strategies for fostering intellectual development and nurturing young talents.


Assuntos
Criança Superdotada , Humanos , Criança , Masculino , Feminino , Criança Superdotada/psicologia , Inquéritos e Questionários , Transtornos do Sono-Vigília/psicologia , Sono/fisiologia , Escalas de Wechsler , Inteligência/fisiologia
16.
Animals (Basel) ; 14(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199879

RESUMO

With the rising popularity of pet cats as companion animals, the survival of newborn kittens is often threatened by factors such as inadequate nursing, maternal behavior and blood incompatibility. These challenges require the use of milk replacers for nurturing. To investigate the effects that feeding kittens with an experimental milk replacer (EMR) have on growth and development, intestinal microbiota, immune response and nutrient metabolism, 12 British shorthair kittens were randomly divided into two groups after nursing for the first week of life. Kittens were fed queen's milk or EMR, whereby kittens fed queen's milk served as the control (CON) group. The findings revealed that the CON group exhibited superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) (p < 0.01) on day 7. However, the EMR group had better growth performance during the later stage of the experiment (p < 0.05); the immunocompetence and antioxidant capacity of the EMR group were not significantly different from those of the CON group in the middle and late stages of the experiment, and the mean values of all the indexes were slightly better than those of the control group. Sequencing of the 16S rRNA gene in microbiota demonstrated that EMR increased the colonization of bacterial genera, including Lachnospiraceae, Enterococcus, Rothia and Ligilactobacillus. Compared to the CON group, acetate acid (p < 0.05), propionate acid (p < 0.01) and total SCFAs (p < 0.01) in the EMR group were significantly increased. Moreover, the intake of the EMR resulted in the production of distinct metabolites implicated in the metabolism of lipids and amino acids, among other nutrients, thus invigorating the associated metabolic pathways. These results elucidate the impact of administering a milk replacer on gastrointestinal health and nutrient assimilation in kittens. The study provides insights into the use of milk powder alternatives and sets the stage for future research on the formulation and effectiveness of kitten milk replacers.

17.
Aging Cell ; : e14320, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158018

RESUMO

Degenerative spinal stenosis is a chronic disease that affects the spinal ligaments and associated bones, resulting in back pain and disorders of the limbs among the elderly population. There are few preventive strategies for such ligament degeneration. We here aimed to establish a comprehensive transcriptomic atlas of ligament tissues to identify high-priority targets for pharmaceutical treatment of ligament degeneration. Here, single-cell RNA sequencing was performed on six degenerative ligaments and three traumatic ligaments to understand tissue heterogeneity. After stringent quality control, high-quality data were obtained from 32,014 cells. Distinct cell clusters comprising stromal and immune cells were identified in ligament tissues. Among them, we noted that collagen degradation associated with CTHRC1+ fibroblast-like cells and calcification linked to CRTAC1+ chondrocyte-like cells were key features of ligament degeneration. SCENIC analysis and further experiments identified ATF3 as a key transcription factor regulating the pathogenesis of CRTAC1+ chondrocyte-like cells. Typically, immune cells infiltrate localized organs, causing tissue damage. In our study, myeloid cells were found to be inflammatory-activated, and SPP1+ macrophages were notably enriched in degenerative ligaments. Further exploration via CellChat analysis demonstrated a robust interaction between SPP1+ macrophages and CRTAC1+ chondrocyte-like cells. Activated by SPP1, ATF3 propels the CRTAC1/MGP/CLU axis, fostering ligament calcification. Our unique resource provides novel insights into possible mechanisms underlying ligament degeneration, the target cell types, and molecules that are expected to mitigate degenerative spinal ligament. We also highlight the role of immune regulation in ligament degeneration and calcification, enhancing our understanding of this disease.

18.
Adv Mater ; : e2408341, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097953

RESUMO

The electrosynthesis of hydrogen peroxide (H2O2) from O2 or H2O via the two-electron (2e-) oxygen reduction (2e- ORR) or water oxidation (2e- WOR) reaction provides a green and sustainable alternative to the traditional anthraquinone process. Herein, a paired-electrosynthesis tactic is reported for concerted H2O2 production at a high rate by coupling the 2e- ORR and 2e- WOR, in which the bifunctional oxygen-vacancy-enriched Bi2O3 nanorods (Ov-Bi2O3-EO), obtained through electrochemically oxidative reconstruction of Bi-based metal-organic framework (Bi-MOF) nanorod precursor, are used as both efficient anodic and cathodic electrocatalysts, achieving concurrent H2O2 production at both electrodes with high Faradaic efficiencies. Specifically, the coupled 2e- ORR//2e- WOR electrolysis system based on such distinctive oxygen-defect Bi catalyst displays excellent performance for the paired-electrosynthesis of H2O2, delivering a remarkable cell Faradaic efficiency of 154.8% and an ultrahigh H2O2 production rate of 4.3 mmol h-1 cm-2. Experiments combined with theoretical analysis reveal the crucial role of oxygen vacancies in optimizing the adsorption of intermediates associated with the selective two-electron reaction pathways, thereby improving the activity and selectivity of the 2e- reaction processes at both electrodes. This work establishes a new paradigm for developing advanced electrocatalysts and designing novel paired-electrolysis systems for scalable and sustainable H2O2 electrosynthesis.

19.
Angew Chem Int Ed Engl ; : e202413276, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132935

RESUMO

In the deep-ultraviolet (DUV) region, nonlinear optical (NLO) crystals must meet stringent requirements, including a large optical band gap and sufficient second harmonic generation (SHG) response. Typically, these criteria are fulfilled by borates, carbonates and nitrates containing π-conjugated groups. In contrast, sulfates and phosphates, with polarizabilities significantly smaller than those of π-conjugated groups, struggle to achieve similar performance. Here, we present the discovery of Mg2PO4Cl, a magnesium-based phosphate, identified from over 10,000 phosphates based on a polar-axial-symmetry screening strategy, which exhibits the highest SHG response (5.2 × KH2PO4 (KDP)) with phase-matching ability among non-π-conjugated DUV transparent NLO crystals. This compound belongs to the Pna21 space group, with [PO4] units consistently aligned along the 21 screw axis and glide planes throughout its crystal structure. Theoretical calculations attribute its remarkable SHG effect to the orderly arrangement of heteroanionic [MgO5Cl] and [MgO4Cl2] polyhedra alongside isolated [PO4] tetrahedra, supported by Berry phase analysis. Furthermore, a crystallographic structure analysis of phosphates and sulfates with significant SHG effects validates the effectiveness of our screening strategy. These findings offer valuable insights into the origins of NLO effects in non-π-conjugated compounds from both a material design and structural chemistry perspective, inspiring future efforts to revitalize DUV phosphates.

20.
Exp Ther Med ; 28(3): 364, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091414

RESUMO

[This retracts the article DOI: 10.3892/etm.2017.5622.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA