Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Sci Immunol ; 9(98): eadk2612, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093956

RESUMO

Aberrant activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway causes autoimmunity in humans and mice; however, the exact mechanism by which the cGAS-STING pathway initiates adaptive immunity and tissue pathology is still not fully understood. Here, we used a cGAS knockin (KI) mouse model that develops systemic autoimmunity. In the lungs of cGAS-KI mice, blood vessels were enclosed by organized lymphoid tissues that resemble tertiary lymphoid structures (TLSs). Cell-intrinsic cGAS induction promoted up-regulation of CCR5 in CD8+ T cells and led to CCL5 production in vascular endothelial cells. Peripheral CD8+ T cells were recruited to the lungs and produced CXCL13 and interferon-γ. The latter triggered endothelial cell death, potentiated CCL5 production, and was essential for TLS establishment. Blocking CCL5 or CCR5, or depleting CD8+ T cells, impaired TLS formation. cGAS-mediated TLS formation also enhanced humoral and antitumor responses. These data demonstrate that cGAS signaling drives a specialized lymphoid structure that underlies autoimmune tissue pathology.


Assuntos
Linfócitos T CD8-Positivos , Células Endoteliais , Nucleotidiltransferases , Estruturas Linfoides Terciárias , Animais , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Camundongos , Células Endoteliais/imunologia , Estruturas Linfoides Terciárias/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL5/imunologia , Quimiocina CCL5/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Receptores CCR5/imunologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Autoimunidade/imunologia
2.
Anal Chim Acta ; 1320: 343017, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142789

RESUMO

BACKGROUND: Hydrogen peroxide (H2O2) plays a vital role in human health and have been regarded as a crucial analyte in metabolic processes, redox transformations, foods research and medical fields. Especially, the long-time and excessive digestion of H2O2 may even cause severe diseases. Although conventional instrumental methods and nanozymes-based colorimetric methods have been developed to accomplish the quantitative analysis of H2O2, the drawbacks of instrument dependence, cost-effectiveness, short lifespan, non-portable and unsustainable detection efficacies will limit their applications in different detection scenarios. RESULTS: Herein, to address these challenges, we have proposed a novel strategy for nanozyme (RuO2) hydrogel preparation by the solid support from cross-linked polyvinyl alcohol (PVA) and chitosan (CS) to both inherit the dominant peroxidase-like (POD) activity and protect the RuO2 from losing efficacies. Taking advantages from the hydrogel, the encapsulated RuO2 were further prepared as the regularly spherical beads (PCRO) to exhibit the sustainable, recyclable, and robust catalysis. Moreover, the intrinsic color interferences which originated from RuO2 can be avoided by the encapsulation strategy to promote the detection accuracy. Meanwhile, the high mechanical strength of PCRO shows the high stability, reproducibility, and cyclic catalysis to achieve the recyclable detection performance and long lifetime storage (40 days), which enables the sensitively detection of H2O2 with the detection limit as lower to 15 µM and the wide detection linear range from 0.025 to 1.0 mM. SIGNIFICANCE: On the basis of the unique properties, PCRO has been further adopted to construct a smartphone detection platform to realize the instrument-free and visual analysis of H2O2 in multi-types of milk and real water samples through capturing, processing, and analyzing the RGB values from the colorimetric photographs. Therefore, PCRO with the advanced detection efficacies holds the great potential in achieving the portable and on-site analysis of targets-of-interest.


Assuntos
Quitosana , Hidrogéis , Peróxido de Hidrogênio , Álcool de Polivinil , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Quitosana/química , Álcool de Polivinil/química , Catálise , Hidrogéis/química , Colorimetria , Limite de Detecção
3.
J Asian Nat Prod Res ; : 1-8, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963349

RESUMO

The preliminary study revealed that the ethyl acetate eluate of Youngia japonica (YJ-E) could inhibit the expression of key proteins of p-p65, p-IκBα, p-IKKα/ß, and p-AKT in LPS stimulated BV2 cell. Further phytochemical study led to the isolation of eight compounds from YJ-E, including one new sesquiterpene lactone. Their structures were elucidated by several spectroscopic data, and comparing the NMR data of known compound. In addition, all of the isolates were evaluated for the anti-inflammatory effect. As a result, compounds 3 and 4 distinctly attenuated the expressions of p-IκBα, p-p65, and p-AKT in LPS stimulated BV2 cell, respectively.

4.
Neuron ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39019040

RESUMO

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

5.
Environ Geochem Health ; 46(9): 345, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073488

RESUMO

Pollution of farmland by heavy metals threatens food security and human health. In addition, heavy metals in soil could infiltrate into groundwater to influence the water quality and safety of drinking water. However, the relationship between heavy metal pollution in soil and groundwater is still not clear. In this study, we investigated the soil and groundwater in the Guanzhong Plain region, which is a significant grain production base in China, and determined the spatial distributions, ecological risk, sources, and migration fates of heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn). The results showed that the mean values (0-20 cm) in the soil were 19.57 mg kg-1 for As, 0.71 mg kg-1 for Cd, 69.65 mg kg-1 for Cr, 21.97 mg kg-1 for Cu, 28.67 mg kg-1 for Ni, 17.54 mg kg-1 for Pb, and 73.77 mg kg-1 for Zn, and the corresponding mean values in groundwater were 1.2, 0.04, 4.69, 0.15, 0.07, 0.3, and 3.6 µg L-1, respectively. The mean values for As, Cd, Cr, Pb, and Zn in soil exceeded the background values, and the mean values for As, Cd and Pb exceeded those in groundwater. Positive matrix factorization models identified five sources (fertilizers and organic fertilizers, natural sources, pesticides and herbicides, industrial activities, and sedimentation caused by transportation) for heavy metal pollution in soil and four sources (industry activity, atmospheric sedimentation caused by transportation, natural sources, and agriculture) for heavy metal pollution in groundwater. The soil particle composition and soil organic carbon content were important factors that affected the vertical distribution of heavy metals in the soil. The migration modes (convection and diffusion) were not found for all heavy metals. These results help to understand the relationships between heavy metals in soil and groundwater in farmland ecosystems regionally.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Metais Pesados/análise , Água Subterrânea/química , Poluentes do Solo/análise , China , Poluentes Químicos da Água/análise , Agricultura , Solo/química
6.
Research (Wash D C) ; 7: 0431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050821

RESUMO

Rapid diagnosis and real-time monitoring are of great important in the fight against cancer. However, most available diagnostic technologies are time-consuming and labor-intensive and are commonly invasive. Here, we describe CytoExam, an automatic liquid biopsy instrument designed based on inertial microfluidics and impedance cytometry, which uses a deep learning algorithm for the analysis of circulating tumor cells (CTCs). In silico and in vitro experiments demonstrated that CytoExam could achieve label-free detection of CTCs in the peripheral blood of cancer patients within 15 min. The clinical applicability of CytoExam was also verified using peripheral blood samples from 10 healthy donors and >50 patients with breast, colorectal, or lung cancer. Significant differences in the number of collected cells and predicted CTCs were observed between the 2 groups, with variations in the dielectric properties of the collected cells from cancer patients also being observed. The ultra-fast and minimally invasive features of CytoExam may pave the way for new paths for cancer diagnosis and scientific research.

7.
Nano Lett ; 24(31): 9720-9726, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051601

RESUMO

Surface plasmons excited via inelastic tunnelling have led to plasmon light sources with small footprints and ultrafast response speeds, which are favored by integrated optical circuits. Self-assembled monolayers of organic molecules function as highly tunable tunnel barriers with novel functions. However, limited by the low effective contact between the liquid metal electrode and the self-assembled monolayers, it is quite challenging to obtain molecular plasmon light sources with high density and uniform emission. Here, by combining lithographic patterning with a solvent treatment method, we have demonstrated electrically driven deterministic plasmon emission from arrays of molecular tunnel junctions. The solvent treatment could largely improve the effective contact from 9.6% to 48% and simultaneously allow the liquid metal to fill into lithographically patterned micropore structures toward deterministic plasmon emission with desired patterns. Our findings open up new possibilities for tunnel junction-based plasmon light sources, laying the foundation for electrically driven light-emitting metasurfaces.

8.
Anal Chem ; 96(25): 10313-10321, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38857194

RESUMO

Mechanical phenotyping has been widely employed for single-cell analysis over recent years. However, most previous works on characterizing the cellular mechanical properties measured only a single parameter from one image. In this paper, the quasi-real-time multiparameter analysis of cell mechanical properties was realized using high-throughput adjustable deformability cytometry. We first extracted 12 deformability parameters from the cell contours. Then, the machine learning for cell identification was performed to preliminarily verify the rationality of multiparameter mechanical phenotyping. The experiments on characterizing cells after cytoskeletal modification verified that multiple parameters extracted from the cell contours contributed to an identification accuracy of over 80%. Through continuous frame analysis of the cell deformation process, we found that temporal variation and an average level of parameters were correlated with cell type. To achieve quasi-real-time and high-precision multiplex-type cell detection, we constructed a back propagation (BP) neural network model to complete the fast identification of four cell lines. The multiparameter detection method based on time series achieved cell detection with an accuracy of over 90%. To solve the challenges of cell rarity and data lacking for clinical samples, based on the developed BP neural network model, the transfer learning method was used for the identification of three different clinical samples, and finally, a high identification accuracy of approximately 95% was achieved.


Assuntos
Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Redes Neurais de Computação , Técnicas Analíticas Microfluídicas/instrumentação , Citometria de Fluxo/métodos , Fenótipo , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina , Dispositivos Lab-On-A-Chip
9.
J Mater Chem B ; 12(26): 6442-6451, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860876

RESUMO

Self-assembled DNA nanostructures hold great promise in biosensing, drug delivery and nanomedicine. Nevertheless, challenges like instability and inefficiency in cellular uptake of DNA nanostructures under physiological conditions limit their practical use. To tackle these obstacles, this study proposes a novel approach that integrates the cationic polymer polyethyleneimine (PEI) with DNA self-assembly. The hypothesis is that the positively charged linear PEI can facilitate the self-assembly of DNA nanostructures, safeguard them against harsh conditions and impart them with the cellular penetration characteristic of PEI. As a demonstration, a DNA nanotube (PNT) was successfully synthesized through PEI mediation, and it exhibited significantly enhanced stability and cellular uptake efficiency compared to conventional Mg2+-assembled DNA nanotubes. The internalization mechanism was further found to be both clathrin-mediated and caveolin-mediated endocytosis, influenced by both PEI and DNA. To showcase the applicability of this hybrid nanostructure for biomedical settings, the KRAS siRNA-loaded PNT was efficiently delivered into lung adenocarcinoma cells, leading to excellent anticancer effects in vitro. These findings suggest that the PEI-mediated DNA assembly could become a valuable tool for future biomedical applications.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nanotubos , Polietilenoimina , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno , Humanos , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , DNA/química , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Nanotubos/química , Tamanho da Partícula , Polietilenoimina/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia
10.
Chem Biodivers ; : e202401063, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924351

RESUMO

In the process of searching for anti-breast cancer agents, five sesquiterpene lactones (1-5), including two previously undescribed ones, yjaponica B-C (1-2), were isolated from the herb of Youngia japonica. Their structures were elucidated by spectroscopic data analyses and Marfey's method. Cytotoxic activities of all compounds against A549, U87, and 4T1 cell lines were tested using the CCK8 assay. The result showed that compound 3 possessed the highest cytotoxic activity against 4T1 cells with an IC50 value of 10.60 µM. Furthermore, compound 3 distinctly induced apoptosis, inhibited immigration, and blocked the cell cycle of 4T1 cells. In addition, compound 3 induced the production of reactive oxygen species. Further anticancer mechanism studies showed that compound 3 significantly upregulated expression of the cleaved caspase 3 and PARP, whereas it downregulated the expression of Bcl-2, cyclin D1, cyclin A2, CDK4, and CDK2. Taken together, our results demonstrate that compound 3 has a high potential of being used as a leading compound for the discovery of new anti-breast cancer agent.

11.
BMC Oral Health ; 24(1): 658, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840089

RESUMO

BACKGROUND: Tooth avulsion represents the most severe form of dental trauma, necessitating tooth replantation as the primary treatment. However, the risk of replacement root resorption (RRR) poses a significant threat to tooth retention following replantation. This study preliminarily aimed to investigate the effect of physiological occlusal force on RRR after the replantation of avulsed teeth and to explore the potential underlying mechanisms. METHODS: Thirty-six 4-week-old male Sprague-Dawley rats underwent extraction and immediate replantation of their left maxillary molars. The rats were randomly divided into two major groups: the occluded (n = 18) group, where the opposite mandibular teeth were preserved; non-occluded (n = 18) group, where the opposite mandibular teeth were extracted. Within each major group, there were three subgroups corresponding to 7 days, 14 days, and 2 months, resulting in a total of six subgroups, (n = 6 per subgroup). The right maxillary first molars served as the normal control. Various periodontal characteristics were assessed using haematoxylin-eosin (H&E), tartrate-resistant acid phosphatase (TRAP) staining, and micro-computed tomography (micro-CT). RESULTS: Histological staining revealed that under occlusal force, the early stage (day 7) after tooth replantation mainly manifested as root surface resorption, especially in the non-occluded group, which gradually diminished over time. Cementum and periodontal ligament (PDL) repair was observed on day 14. Micro-CT analysis indicated a significant decrease in PDL width in the non-occluded group two months after replantation, consistent with the histological findings, signifying severe RRR in the non-occluded group. CONCLUSIONS: This study provides preliminary evidence that physiological occlusal force may attenuate osteoclastogenesis during the early stage of tooth replantation, thereby reducing the occurrence of RRR and promoting periodontal healing.


Assuntos
Força de Mordida , Ratos Sprague-Dawley , Reabsorção da Raiz , Avulsão Dentária , Reimplante Dentário , Microtomografia por Raio-X , Animais , Reabsorção da Raiz/etiologia , Reimplante Dentário/métodos , Masculino , Avulsão Dentária/cirurgia , Ratos , Dente Molar/cirurgia
12.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38788722

RESUMO

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Assuntos
Colite , Camundongos Knockout , Receptores Adrenérgicos alfa 2 , Células-Tronco , Tiramina , Animais , Tiramina/metabolismo , Tiramina/farmacologia , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Camundongos , Receptores Adrenérgicos alfa 2/metabolismo , Células-Tronco/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Tirosina Descarboxilase/metabolismo , Enterococcus faecalis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ioimbina/farmacologia , Modelos Animais de Doenças , Enterococcus/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Proliferação de Células , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana
13.
Front Oncol ; 14: 1391835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746671

RESUMO

Background: Lung segmentectomy has gained much more attention as an important surgical method for treating early-stage lung cancer. However, incomplete fissures increase the difficulty of lung segmentectomy. The aim of this study was to analyze the safety and efficacy of the fissure-first approach in precision resection of lung segments for patients with incomplete fissures. Methods: The clinical data of patients with incomplete fissures who underwent lung segmentectomy were retrospectively analyzed. Date was divided into fissure-first approach in lung segmentectomy group (group A) and fissure-last approach in lung segmentectomy group (group B). The general linear data, operation times, intraoperative adverse events, postoperative recovery dates and complications were compared. Results: A total of 122 patients with complete clinical data were included. Patients in group B had more COPD (p < 0.05), and the lesions in group A were more closely related to the hilum of the lung (p < 0.05). Compared to Group B, Group A achieved better surgical outcomes, such as operation time, postoperative hospital stays, intraoperative bleeding, number of intrapulmonary lymph nodes sampled, counts of resected subsegments (except the upper lobe of the right lung), and rate of conversion to thoracotomy (all p < 0.05). Conclusion: The fissure-first approach is a safe and effective surgical approach in lung segmentectomy for patients with incomplete fissures. This approach can reduce the counts of resected subsegments and improve techniques in lung segmentectomy for patients with lung incomplete fissures.

14.
Ren Fail ; 46(1): 2353351, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38757707

RESUMO

OBJECTIVE: To investigate the feasibility and efficacy of combining ultrasound-guided sharp needle technique with percutaneous transluminal angioplasty (PTA) for treating outflow stenosis or dysfunction in arteriovenous fistula (AVF) among hemodialysis patients. METHODS: From October 2021 to March 2023, patients with occluded or malfunctional fistula veins not amenable to regularly angioplasty were retrospectively enrolled in the study. They underwent ultrasound-guided sharp needle intervention followed by PTA. Data on the location and length between the two veins, technical success, clinical outcomes, and complications were collected. Patency rates post-angioplasty were calculated through Kaplan-Meier analysis. RESULTS: A total of 23 patients were included. The mean length of the reconstructed extraluminal segment was 3.18 cm. The sharp needle opening was performed on the basilic vein (60.9%), brachial vein (26.1%), or upper arm cephalic vein (13%) to create outflow channels. Postoperatively, all cases presented with mild subcutaneous hematomas around the tunneling site and minor diffuse bleeding. The immediate patency rate for the internal fistulas was 100%, with 3-month, 6-month, and 12-month patency rates at 91.3%, 78.3%, and 43.5%, respectively. CONCLUSION: Sharp needle technology merged with PTA presents an effective and secure minimally invasive method for reconstructing the outflow tract, offering a new solution for recanalizing high-pressure or occluded fistulas.


Assuntos
Derivação Arteriovenosa Cirúrgica , Diálise Renal , Ultrassonografia de Intervenção , Grau de Desobstrução Vascular , Humanos , Feminino , Masculino , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Derivação Arteriovenosa Cirúrgica/métodos , Pessoa de Meia-Idade , Diálise Renal/métodos , Estudos Retrospectivos , Idoso , Adulto , Agulhas , Angioplastia/métodos , Oclusão de Enxerto Vascular/etiologia , Estudos de Viabilidade , Resultado do Tratamento
15.
China CDC Wkly ; 6(18): 408-412, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38737480

RESUMO

Objective: Foodborne diseases pose a significant public health concern globally. This study aims to analyze the correlation between disease prevalence and climatic conditions, forecast the pattern of foodborne disease outbreaks, and offer insights for effective prevention and control strategies and optimizing health resource allocation policies in Guizhou Province. Methods: This study utilized the χ2 test and four comprehensive prediction models to analyze foodborne disease outbreaks recorded in the Guizhou Foodborne Disease Outbreak system between 2012 and 2022. The best-performing model was chosen to forecast the trend of foodborne disease outbreaks in Guizhou Province, 2023-2025. Results: Significant variations were observed in the incidence of foodborne disease outbreaks in Guizhou Province concerning various meteorological factors (all P≤0.05). Among all models, the SARIMA-ARIMAX combined model demonstrated the most accurate predictive performance (RMSE: Prophet model=67.645, SARIMA model=3.953, ARIMAX model=26.544, SARIMA-ARIMAX model=26.196; MAPE: Prophet model=42.357%, SARIMA model=37.740%, ARIMAX model=15.289%, SARIMA-ARIMAX model=13.961%). Conclusion: The analysis indicates that foodborne disease outbreaks in Guizhou Province demonstrate distinct seasonal patterns. It is recommended to concentrate prevention efforts during peak periods. The SARIMA-ARIMAX hybrid model enhances the precision of monthly forecasts for foodborne disease outbreaks, offering valuable insights for future prevention and control strategies.

16.
Cell Stem Cell ; 31(5): 591-592, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701755

RESUMO

Recently in Cell Metabolism, Wei et al.1 unveiled a brain-to-gut pathway that conveys psychological stress to intestinal epithelial cells, leading to their dysfunction. This gut-brain axis involves a microbial metabolite, indole-3-acetate (IAA), as a niche signal that hampers mitochondrial respiration to skew intestinal stem cell (ISC) fate.


Assuntos
Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Animais , Humanos , Intestinos/citologia , Intestinos/microbiologia , Estresse Fisiológico , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Diferenciação Celular , Mitocôndrias/metabolismo
17.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594251

RESUMO

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Estruturas R-Loop , Animais , Humanos , Camundongos , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/metabolismo , Homeostase , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Celulas de Paneth/metabolismo , Células-Tronco/metabolismo
18.
Biochem Genet ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581475

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder with an autosomal recessive inheritance pattern. Patients with severe symptoms may suffer respiratory failure, leading to death. The homozygous deletion of exon 7 in the SMN1 gene accounts for nearly 95% of all cases. Population carrier screening for SMA and prenatal diagnosis by amniocentesis for high-risk couples can assist in identifying the risk of fetal disease. We provided the SMA carrier screening process to 55,447 pregnant women in Yancheng from October 2020 to December 2022. Among them, 8185 participated in this process, with a participation rate of around 14.76% (95% CI 14.47-15.06%). Quantitative real-time polymerase chain reaction (qPCR) was used to detect deletions of SMN1 exons 7 and 8 (E7, E8) in screened pregnant women. 127 were identified as carriers (111 cases of E7 and E8 heterozygous deletions, 15 cases of E7 heterozygous deletions, and 1 case of E7 heterozygous deletions and E8 homozygous deletions), resulting in a carrying rate of around 1.55% (95% CI 1.30-1.84%). After genetic counseling, 114 spouses of pregnant women who tested positive underwent SMA carrier screening; three of them were screened as SMA carriers. Multiplexed ligation-dependent probe amplification (MLPA) was used for the prenatal diagnosis of the fetuses of high-risk couples. Two of them exhibited two copies of SMN1 exon 7 (normal), and the pregnancy was continued; one exhibited no copies of SMN1 exon 7 and exon 8 (SMA patient), and the pregnancy was terminated. Analyzing SMN1 mutations in Yancheng and provide clinical evidence for SMA genetic counseling and birth defect prevention. Interventional prenatal diagnosis for high-risk families can promote informed reproductive selection and prepare for the fetus's early treatment.

19.
Bioorg Chem ; 147: 107356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604021

RESUMO

Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.


Assuntos
Corantes Fluorescentes , Heparina , Peptídeos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Heparina/análise , Heparina/química , Peptídeos/química , Peptídeos/síntese química , Estrutura Molecular , Humanos , Espectrometria de Fluorescência
20.
Anal Chim Acta ; 1301: 342464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553122

RESUMO

BACKGROUND: Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS: Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 µg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 µg mL-1. SIGNIFICANCE: Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.


Assuntos
Técnicas Biossensoriais , Praguicidas , Piperidinas , Humanos , Praguicidas/análise , Acetilcolina/química , Acetilcolinesterase/química , Compostos Organofosforados/análise , Peróxido de Hidrogênio/química , Catálise , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA