Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 6(5): 1468-1478, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33251383

RESUMO

Stress corrosion cracking (SCC) may lead to brittle, unexpected failure of medical devices. However, available researches are limited to Mg-based biodegradable metals (BM) and pure Zn. The stress corrosion behaviors of newly-developed Zn alloys remain unclear. In the present work, we conducted slow strain rate testing (SSRT) and constant-load immersion test on a promising Zn-0.8 wt%Li alloy in order to investigate its SCC susceptibility and examine its feasibility as BM with pure Zn as control group. We observed that Zn-0.8 wt%Li alloy exhibited low SCC susceptibility. This was attributed to variations in microstructure and deformation mechanism after alloying with Li. In addition, both pure Zn and Zn-0.8 wt%Li alloy did not fracture over a period of 28 days during constant-load immersion test. The magnitude of applied stress was close to physiological condition and thus, we proved the feasibility of both materials as BM.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 4): 370-375, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30141422

RESUMO

During an investigation of the Mg-rich end of the Mg-Al-La system, a new ternary phase with the composition of (Al,Mg)3La was identified. The crystal structure of this phase was determined by conventional X-ray powder diffraction and transmission electron microscopy analysis and refined using high-resolution X-ray powder diffraction. The (Al,Mg)3La phase is found to have an orthorhombic structure with a space group of C2221 and lattice parameters of a = 4.3365 (1) Å, b = 18.8674 (4) Šand c = 4.4242 (1) Å, which is distinctly different from the binary Al3La phase (P63/mmc). The resolved structure of the (Al,Mg)3La phase is further verified by high-angle annular dark-field scanning transmission electron microscopy.

3.
ISA Trans ; 57: 322-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25840676

RESUMO

The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA