Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996085

RESUMO

A strain engineering strategy is crucial for designing a high-performance catalyst. However, how to control the strain in metastable phase two-dimensional (2D) materials is technically challenging due to their nanoscale sizes. Here, we report that cerium dioxide (CeO2) is an ideal loading material for tuning the in-plane strain in 2D metastable 1T-phase IrO2 (1T-IrO2) via an in situ growth method. Surprisingly, 5% CeO2 loaded 1T-IrO2 with 8% compressive strain achieves an overpotential of 194 mV at 10 mA cm-2 in a three-electrode system. It also retained a high current density of 900 mA cm-2 at a cell voltage of 1.8 V for a 400 h stability test in the proton-exchange membrane device. More importantly, the Fourier transform infrared measurements and density functional theory calculation reveal that the CeO2 induced strained 1T-IrO2 directly undergo the *O-*O radical coupling mechanism for O2 generation, totally different from the traditional adsorbate evolution mechanism in pure 1T-IrO2. These findings illustrate the important role of strain engineering in paving up an optimal catalytic pathway in order to achieve robust electrochemical performance.

2.
J Am Chem Soc ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995375

RESUMO

Addressing the sluggish kinetics in the alkaline hydrogen oxidation reaction (HOR) is a pivotal yet challenging step toward the commercialization of anion-exchange membrane fuel cells (AEMFCs). Here, we have successfully immobilized indium (In) atoms in an orderly fashion into platinum (Pt) nanoparticles supported by reduced graphene oxide (denoted as O-Pt3In/rGO), significantly enhancing alkaline HOR kinetics. We have revealed that the ordered atomic matrix enables uniform and optimized hydrogen binding energy (HBE), hydroxyl binding energy (OHBE), and carbon monoxide binding energy (COBE) across the catalyst. With a mass activity of 2.3066 A mg-1 at an overpotential of 50 mV, over 10 times greater than that of Pt/C, the catalyst also demonstrates admirable CO resistance and stability. Importantly, the AEMFC implementing this catalyst as the anode catalyst has achieved an impressive power output compared to Pt/C. This work not only highlights the significance of constructing ordered oxophilic sites for alkaline HOR but also sheds light on the design of well-structured catalysts for energy conversion.

3.
Bioengineering (Basel) ; 11(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927843

RESUMO

(1) Background: A rise in intraocular pressure (IOP) and decreased retinal ganglion cells are frequent indicators of effective modeling of chronic ocular hypertension in mice. In this study, the sensitivity of the mouse model to pharmaceutical therapy to reduce intraocular tension was assessed, the model's safety was confirmed using a cytotoxicity test, and the success rate of the mouse model of ocular hypertension was assessed by assessing alterations in IOP and neurons in the ganglion cell layer. (2) Methods: A mouse model of chronic ocular hypertension was produced in this study by employing photocrosslinkable sericin hydrogel injection and LED lamp irradiation. The eyes of 25 C57BL/6 male mice were subjected to 405 nm UV light from the front for 2 min after being injected with 5 µL of sericin hydrogel in the anterior chamber of the left eye. IOP in the mice was measured daily, and IOP rises greater than 5 mmHg were considered intraocular hypertension. When the IOP was lowered, the intervention was repeated once, but the interval between treatments was at least 2 weeks. The right eyes were not treated with anything as a normal control group. Mice eyeballs were stained with HE, Ni-type, and immunofluorescence to assess the model's efficacy. Two common drugs (tafluprost eye drops and timolol eye drops) were provided for one week after four weeks of stable IOP, and IOP changes were assessed to determine the drug sensitivity of the mouse model of chronic ocular hypertension. Furthermore, CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was utilized to investigate the safety of the ocular hypertension model by evaluating the deleterious effects of photocrosslinkable sericin hydrogel on cells. (3) Results: Before injection, the basal IOP was (9.42 ± 1.28) mmHg (1 kPa = 7.5 mmHg) in the experimental group and (9.08 ± 1.21) in the control group. After injection, cataract occurred in one eye, corneal edema in one eye, endophthalmitis in one eye, iris incarceration in one eye, and eyeball atrophy in one eye. Five mice with complications were excluded from the experiment, and twenty mice were left. Four weeks after injection, the IOP of the experimental group was maintained at (19.7 ± 4.52) mmHg, and that of the control group was maintained at (9.92 ± 1.55) mmHg, and the difference between the two groups was statistically significant (p < 0.05). Before the intervention, the IOP in the experimental group was (21.7 ± 3.31) mmHg in the high IOP control group, (20.33 ± 2.00) mmHg in the tafluprost eye drops group, and (20.67 ± 3.12) mmHg in the timolol maleate eye drops group. The IOP after the intervention was (23.2 ± 1.03) mmHg, (12.7 ± 2.11) mmHg, and (10.4 ± 1.43) mmHg, respectively. Before and after the intervention, there were no significant differences in the high-IOP control group (p > 0.05), there were statistically significant differences in the timolol eye drops group (p < 0.05), and there were statistically significant differences in the tafluprost eye drops group (p < 0.05). One week after drug withdrawal, there was no significant difference in IOP among the three groups (p > 0.05). In the high-IOP group, the protein (sericin hydrogel) showed a short strips or fragmented structure in the anterior chamber, accompanied by a large number of macrophages and a small number of plasma cells. The shape of the chamber angle was normal in the blank control group. The number of retinal ganglion cells decreased significantly 8 weeks after injection of sericin hydrogel into the anterior chamber, and the difference was statistically significant compared with the blank control group (p < 0.05). After the cells were treated with photocrosslinkable sericin hydrogel, there was no significant difference in the data of the CellTiter 96® assay kit of MTS compared with the blank control group (p > 0.05). (4) Conclusions: A mouse model of chronic intraocular hypertension can be established successfully by injecting sericin in the anterior chamber and irradiating with ultraviolet light. The model can simulate the structural and functional changes of glaucoma and can effectively reduce IOP after the action of most antihypertensive drugs, and it is highly sensitive to drugs. Sericin has no obvious toxic effect on cells and has high safety.

4.
J Mater Chem B ; 12(27): 6716-6723, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38899871

RESUMO

Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 µm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Impressão Tridimensional , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Proteínas de Ervilha/química , Metacrilatos/química , Ratos Sprague-Dawley , Hidrogéis/química , Hidrogéis/farmacologia , Tinta
5.
Small ; 20(28): e2309476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348999

RESUMO

Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.


Assuntos
Nanocompostos , Nanocompostos/química , Animais , Recidiva Local de Neoplasia/prevenção & controle , Camundongos , Hidrogéis/química , Bandagens , Melanoma/patologia , Linhagem Celular Tumoral , Staphylococcus aureus/efeitos dos fármacos , Humanos , Injeções , Microambiente Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
J Funct Biomater ; 15(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391890

RESUMO

Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.

7.
ACS Nano ; 18(6): 5029-5039, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286031

RESUMO

Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Šand c = 6.89 Šwith a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).

8.
Biofabrication ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241709

RESUMO

The suitable microenvironment of bone regeneration is critically important for periodontitis-derived bone defect repair. Three major challenges in achieving a robust osteogenic reaction are the exist of oral inflammation, pathogenic bacteria invasion and unaffluent seed cells. Herein, a customizable and multifunctional 3D-printing module was designed with glycidyl methacrylate (GMA) modified epsilon-poly-L-lysine (EPLGMA) loading periodontal ligament stem cells (PDLSCs) and myeloid-derived suppressive cells membrane vesicles (MDSCs-MV) bioink (EPLGMA/PDLSCs/MDSCs-MVs, abbreviated as EPM) for periodontitis-derived bone defect repair. The EPM showed excellent mechanical properties and physicochemical characteristics, providing a suitable microenvironment for bone regeneration.In vitro, EPMs presented effectively kill the periodontopathic bacteria depend on the natural antibacterial properties of the EPL. Meanwhile, MDSCs-MV was confirmed to inhibit T cells through CD73/CD39/adenosine signal pathway, exerting an anti-inflammatory role. Additionally, seed cells of PDLSCs provide an adequate supply for osteoblasts. Moreover, MDSCs-MV could significantly enhance the mineralizing capacity of PDLSCs-derived osteoblast. In the periodontal bone defect rat model, the results of micro-CT and histological staining demonstrated that the EPM scaffold similarly had an excellent anti-inflammatory and bone regeneration efficacyin vivo. This biomimetic and multifunctional 3D-printing bioink opens new avenues for periodontitis-derived bone defect repair and future clinical application.


Assuntos
Periodontite , Ratos , Animais , Periodontite/terapia , Periodontite/metabolismo , Células-Tronco/metabolismo , Osteogênese , Inflamação , Ligamento Periodontal/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Células Cultivadas
9.
Mater Today Bio ; 24: 100922, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226011

RESUMO

Trabeculectomy is the primary surgical approach used to treat glaucoma, but scarring of the filtering passage (filtering bleb) after surgery often leads to treatment failure. To address this issue, we have developed a drug release system called RSG/Pd@ZIF-8 PHBV film. This system enables the sustained release of an anti-fibrosis drug, aiming to prevent scarring. In vitro, the film has the function of continuous Rosiglitazone (RSG) release, with accelerated release after laser irradiation. The antibacterial experiments revealed that the film exhibited antibacterial rates of 87.0 % against E.coli and 97.1 % against S.aureus, respectively. Moreover, we confirmed its efficacy in a rabbit eye model undergoing trabeculectomy. After implantation of the film, we observed a prolonged postoperative period for reducing intraocular pressure (IOP), increased survival rate of filtering blebs, and improved long-term surgical outcomes in vivo. Additionally, the film exhibited excellent biosafety. In summary, the designed sustained-release film in this study possesses the aforementioned functionalities, allowing for the regulation of anti-scarring drug release without causing harm post-surgery. This personalized and precise anti-scarring strategy represents a significant advancement.

10.
Nano Lett ; 23(20): 9515-9521, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830516

RESUMO

Two-dimensional (2D) van der Waals single crystals with long-range magnetic order are the precondition and urgent task for developing a 2D spintronics device. In contrast to graphene and transition metal dichalcogenides, the study of 2D single-crystal metal oxides with intrinsic ferromagnetic properties remains a huge challenge. Here, we report a large-size trigonal single-crystal rhodium oxide (SC-Tri-RhO2), with crystal parameters of a = b = 3.074 Å, c = 6.116 Å, and a space group of P3̅m1 (164), exhibiting strong ferromagnetism (FM) at a rather high temperature. Furthermore, theoretical calculations suggest that the ferromagnetism in SC-Tri-RhO2 originates from spin splitting near the Fermi level, and the total magnetic moment is contributed mainly by the Rh atom.

11.
Nat Commun ; 14(1): 5365, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666815

RESUMO

The oxygen evolution reactions in acid play an important role in multiple energy storage devices. The practical promising Ru-Ir based catalysts need both the stable high oxidation state of the Ru centers and the high stability of these Ru species. Here, we report stable and oxidative charged Ru in two-dimensional ruthenium-iridium oxide enhances the activity. The Ru0.5Ir0.5O2 catalyst shows high activity in acid with a low overpotential of 151 mV at 10 mA cm-2, a high turnover frequency of 6.84 s-1 at 1.44 V versus reversible hydrogen electrode and good stability (618.3 h operation). Ru0.5Ir0.5O2 catalysts can form more Ru active sites with high oxidation states at lower applied voltages after Ir incorporation, which is confirmed by the pulse voltage induced current method. Also, The X-ray absorption spectroscopy data shows that the Ru-O-Ir local structure in two-dimensional Ru0.5Ir0.5O2 solid solution improved the stability of these Ru centers.

12.
J Colloid Interface Sci ; 651: 172-181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542892

RESUMO

Transition metal borides (TMBs) or phosphides (TMPs) have attracted great attention to the design of bifunctional electrocatalysts for energy storage. The superaerophobicity and superhydrophilicity of the catalytic electrode surface are crucial factors to determine the reaction process of the gas electrode. Herein, we report a self-supported electrode of carbon nanotube (CNTs) array grown on carbon cloth (CC) modulated together by boron-doped cobalt phosphide (CoP-B/CNTs/CC). The electrode requires the overpotential of 73.8 mV and 189.5 mV at the current density of ±10 mA cm-2 for hydrogen and oxygen evolution reactions in an alkaline electrolyte (1.0 M KOH), respectively, meanwhile maintaining outstanding long-term durability for more than 300 h. The excellent activity of CoP-B/CNTs/CC is attributed to boron doping regulating its electronic structure and further enriching active sites. The attractive stability of CoP-B/CNTs/CC is due to the unique geometric structure of the self-supported electrode. Furthermore, the superaerophobicity and superhydrophilicity of the electrode surface also accelerate the reaction process of the gas electrode. Expectedly, water splitting cells assembled using CoP-B/CNTs/CC electrodes as cathode and anode, respectively, require a cell voltage of 1.54 V at 10 mA cm-2, which is lower than that of the Pt/C/CC||RuO2/CC couple (1.69 V at 10 mA cm-2). Importantly, CoP-B/CNTs/CC||CoP-B/CNTs/CC achieve stable cell voltage under the step current changes (10 mA cm-2, 50 mA cm-2, and 100 mA cm-2) over 300 h. This work highlights a new path to understanding the effects of the static and dynamic behavior of bubbles on the surface of self-supporting electrodes on catalytic performance.

13.
Int J Bioprint ; 9(5): 768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457941

RESUMO

Three-dimensional (3D) bioprinting provides a promising strategy for tissue and organ engineering, and extracellular matrix (ECM)-derived bioinks greatly facilitate its applications in these areas. Decellularized sturgeon cartilage ECM (dSC-ECM)-derived bioinks for cartilage tissue engineering were fabricated with methacrylate-modified dSC-ECM (dSC-ECMMA) and sericin methacrylate (SerMA), which optimizedthe mechanical properties of their solidified hydrogels.dSC-ECM induces chondrocytes to form cell clusters and subsequently reduces their proliferation, but the proliferation of encapsulated chondrocytes was normal in solidified dSC-ECM-5 bioink samples, which contain 5 mg/mL dSC-ECMMA. Hence, this bioink was selected for further investigation. Lyophilized dSC-ECM-5 hydrogels showed connected pore microstructure, which is suitable for cell migration and nutrients transportation. ThisdSC-ECM-5 bioink exhibited high fidelity and good printability by testing via a 3D bioprinting system, and the chondrocytes loaded in printed hydrogel products were viable and able to grow, following incubation, in the cell culture medium. Solidified dSC-ECM-5 and SerMA bioinks loaded with chondrocytes were subcutaneously implanted into nude mice for 4 weeks to test the suitability of the bioink for cartilage tissue engineering. Compared to the SerMA bioink, the dSC-ECM-5 bioink significantly enhanced cartilage tissue regeneration and maturation in vivo, suggesting the potential of this bioink to be applied in cartilage tissue engineering in the future.

14.
Theranostics ; 13(9): 2811-2824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284440

RESUMO

Background: Safe and effective wound healing can be a major clinical challenge. Inflammation and vascular impairment are two main causes of inadequate wound healing. Methods: Here, we developed a versatile hydrogel wound dressing, comprising a straightforward physical mixture of royal jelly-derived extracellular vesicles (RJ-EVs) and methacrylic anhydride modified sericin (SerMA), to accelerate wound healing by inhibiting inflammation and promoting vascular reparation. Results: The RJ-EVs showed satisfactory anti-inflammatory and antioxidant effects, and significantly promoted L929 cell proliferation and migration in vitro. Meanwhile, the photocrosslinked SerMA hydrogel with its porous interior structure and high fluidity made it a good candidate for wound dressing. The RJ-EVs can be gradually released from the SerMA hydrogel at the wound site, ensuring the restorative effect of RJ-EVs. In a full-thickness skin defect model, the SerMA/RJ-EVs hydrogel dressing accelerated wound healing with a healing rate of 96.8% by improving cell proliferation and angiogenesis. The RNA sequencing results further revealed that the SerMA/RJ-EVs hydrogel dressing was involved in inflammatory damage repair-related pathways including recombinational repair, epidermis development, and Wnt signaling. Conclusion: This SerMA/RJ-EVs hydrogel dressing offers a simple, safe and robust strategy for modulating inflammation and vascular impairment for accelerated wound healing.


Assuntos
Vesículas Extracelulares , Cicatrização , Humanos , Inflamação , Hidrogéis/química
15.
IEEE Trans Image Process ; 32: 3606-3621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37368812

RESUMO

Deep learning (DL) based methods represented by convolutional neural networks (CNNs) are widely used in hyperspectral image classification (HSIC). Some of these methods have strong ability to extract local information, but the extraction of long-range features is slightly inefficient, while others are just the opposite. For example, limited by the receptive fields, CNN is difficult to capture the contextual spectral-spatial features from a long-range spectral-spatial relationship. Besides, the success of DL-based methods is greatly attributed to numerous labeled samples, whose acquisition are time-consuming and cost-consuming. To resolve these problems, a hyperspectral classification framework based on multi-attention Transformer (MAT) and adaptive superpixel segmentation-based active learning (MAT-ASSAL) is proposed, which successfully achieves excellent classification performance, especially under the condition of small-size samples. Firstly, a multi-attention Transformer network is built for HSIC. Specifically, the self-attention module of Transformer is applied to model long-range contextual dependency between spectral-spatial embedding. Moreover, in order to capture local features, an outlook-attention module which can efficiently encode fine-level features and contexts into tokens is utilized to improve the correlation between the center spectral-spatial embedding and its surroundings. Secondly, aiming to train a excellent MAT model through limited labeled samples, a novel active learning (AL) based on superpixel segmentation is proposed to select important samples for MAT. Finally, to better integrate local spatial similarity into active learning, an adaptive superpixel (SP) segmentation algorithm, which can save SPs in uninformative regions and preserve edge details in complex regions, is employed to generate better local spatial constraints for AL. Quantitative and qualitative results indicate that the MAT-ASSAL outperforms seven state-of-the-art methods on three HSI datasets.

16.
Nat Commun ; 14(1): 1248, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871002

RESUMO

Metastable metal oxides with ribbon morphologies have promising applications for energy conversion catalysis, however they are largely restricted by their limited synthesis methods. In this study, a monoclinic phase iridium oxide nanoribbon with a space group of C2/m is successfully obtained, which is distinct from rutile iridium oxide with a stable tetragonal phase (P42/mnm). A molten-alkali mechanochemical method provides a unique strategy for achieving this layered nanoribbon structure via a conversion from a monoclinic phase K0.25IrO2 (I2/m (12)) precursor. The formation mechanism of IrO2 nanoribbon is clearly revealed, with its further conversion to IrO2 nanosheet with a trigonal phase. When applied as an electrocatalyst for the oxygen evolution reaction in acidic condition, the intrinsic catalytic activity of IrO2 nanoribbon is higher than that of tetragonal phase IrO2 due to the low d band centre of Ir in this special monoclinic phase structure, as confirmed by density functional theory calculations.

17.
Angew Chem Int Ed Engl ; 62(20): e202218924, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932034

RESUMO

Electrochemical two-electron oxygen reduction reaction (2 e- ORR) to produce hydrogen peroxide (H2 O2 ) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e- ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave-assisted mechanochemical-thermal approach to synthesize hexagonal phase SnO2 (h-SnO2 ) nanoribbons with largely exposed edge structures. In 0.1 M Na2 SO4 electrolyte, the h-SnO2 catalysts achieve the excellent H2 O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g-1 h-1 . The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2 O2 , which is confirmed by density functional theory calculations.

18.
J Ethnopharmacol ; 309: 116305, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36878395

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary fibrosis (PF), a lethal lung disease, can lead to structural destruction of the alveoli until death. Sparganii Rhizoma (SR), primarily distributed in East Asia, has been used clinically for hundreds of years against organ fibrosis and inflammation. AIM OF THE STUDY: We intended to verify the effect of SR alleviate PF and further explore mechanisms. METHODS: Murine model of PF was established by endotracheal infusion of bleomycin. We detected the anti-PF effect of SR through lung coefficient, hydroxyproline content, lung function and pathological staining. Then, we used Western Blot and RT-PCR to verify the mechanism. In vitro experiments, MRC-5 and BEAS-2B were induced to phenotypic transformation by TGF-ß1 and then RT-PCR, WB and IF were conducted to verify the effect of SR. RESULTS: SR significantly reduced BLM-induced PF in mice, improved lung function, slowed the degree of lung tissue lesions, and reduced collagen deposition. SR alleviated PF by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition. In vivo studies explored the mechanism and found that it was related to TGF-ß1/Smad2/3 pathway. CONCLUSIONS: Our research proved SR could effectively treat PF, providing a fresh idea and approach for the treatment of PF with traditional Chinese medicine.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal , Pulmão , Bleomicina , Fibroblastos/metabolismo
19.
ACS Appl Mater Interfaces ; 14(51): 56847-56855, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524830

RESUMO

Electrocatalytic water splitting is a desirable and sustainable strategy for hydrogen production yet still faces challenges due to the sluggish kinetics and rapid deactivation of catalysts in the oxygen evolution process. Herein, we utilized the metal-catalyzed growth technology and phosphating process to fabricate self-supported electrodes (CoxPy@CNT-CC) composed of carbon nanotube (CNT) arrays grown on carbon cloth (CC); thereinto, cobalt-based phosphide nanoparticles (CoxPy) are uniformly encapsulated in the cavity of the CNTs. After further optimization, when the nanoparticles are in the composite phase (CoP2/Co2P), CoP2/Co2P@CNT-CC served as catalytic electrodes with the highest activity and stability for electrocatalytic water splitting in an alkaline medium (1.0 M KOH). The as-prepared CoP2/Co2P@CNT-CC integrates the advantages of the abundant active sites and confinement effect of CNTs, imparting promising electrocatalytic activities and stability in catalyzing both hydrogen evolution reaction and oxygen evolution reaction. Remarkably, electrocatalytic water splitting cells assembled using CoP2/Co2P@CNT-CC electrodes as the cathode and anode, respectively, require a cell voltage of 1.55 V at 10 mA cm-2, which is lower than that of the commercially noble Pt/C/CC and RuO2/CC catalyst couple (1.68 V). Besides, a CoP2/Co2P@CNT-CC||CoP2/Co2P@CNT-CC system shows outstanding durability for a period of 100 h at 10 mA cm-2. This work may provide new ideas for designing bifunctional electrocatalysts for applications in electrocatalytic water splitting.

20.
Nat Commun ; 13(1): 5828, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192414

RESUMO

Designing well-ordered nanocrystal arrays with subnanometre distances can provide promising materials for future nanoscale applications. However, the fabrication of aligned arrays with controllable accuracy in the subnanometre range with conventional lithography, template or self-assembly strategies faces many challenges. Here, we report a two-dimensional layered metastable oxide, trigonal phase rhodium oxide (space group, P-3m1 (164)), which provides a platform from which to construct well-ordered face-centred cubic rhodium nanocrystal arrays in a hexagonal pattern with an intersurface distance of only 0.5 nm. The coupling of the well-ordered rhodium array and metastable substrate in this catalyst triggers and improves hydrogen spillover, enhancing the acidic hydrogen evolution for H2 production, which is essential for various clean energy-related devices. The catalyst achieves a low overpotential of only 9.8 mV at a current density of -10 mA cm-2, a low Tafel slope of 24.0 mV dec-1, and high stability under a high potential (vs. RHE) of -0.4 V (current density of ~750 mA cm-2). This work highlights the important role of metastable materials in the design of advanced materials to achieve high-performance catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA