Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Ethnopharmacol ; 328: 118126, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38556140

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY: To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS: The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS: Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS: BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , Remielinização , Camundongos , Animais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Receptores Acoplados a Proteínas G/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso
2.
Angew Chem Int Ed Engl ; 63(15): e202319798, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38353370

RESUMO

Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.

3.
CNS Neurosci Ther ; 30(2): e14587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421142

RESUMO

INTRODUCTION: Neonatal stress disrupts brain development and increases the risk of neurological disorders later in life. However, the impact of neonatal stress on the development of the glymphatic system and susceptibility to Parkinson's disease (PD) remains largely unknown. METHODS: Neonatal maternal deprivation (NMD) was performed on mice for 14 consecutive days to model chronic neonatal stress. Adeno-associated virus expressing A53T-α-synuclein (α-syn) was injected into the substantia nigra to establish PD model mice. Glymphatic activity was determined using in vivo magnetic resonance imaging, ex vivo fluorescence imaging and microplate assay. The transcription and expression of aquaporin-4 (AQP4) and other molecules were evaluated by qPCR, western blotting, and immunofluorescence. Animal's responses to NMD and α-syn overexpression were observed using behavioral tests. RESULTS: Glymphatic activity was impaired in adult NMD mice. AQP4 polarization and platelet-derived growth factor B (PDGF-B) signaling were reduced in the frontal cortex and hippocampus of both young and adult NMD mice. Furthermore, exogenous α-syn accumulation was increased and PD-like symptoms were aggravated in adult NMD mice. CONCLUSION: The results demonstrated that NMD could disrupt the development of the glymphatic system through PDGF-B signaling and increase the risk of PD later in life, indicating that alleviating neonatal stress could be beneficial in protecting the glymphatic system and reducing susceptibility to neurodegeneration.


Assuntos
Sistema Glinfático , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Sistema Glinfático/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Substância Negra , Modelos Animais de Doenças
4.
Front Immunol ; 15: 1347683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343537

RESUMO

Background: Pancreatic cancer remains an extremely malignant digestive tract tumor, posing a significant global public health burden. Patients with pancreatic cancer, once metastasis occurs, lose all hope of cure, and prognosis is extremely poor. It is important to investigate liver metastasis of Pancreatic cancer in depth, not just because it is the most common form of metastasis in pancreatic cancer, but also because it is crucial for treatment planning and prognosis assessment. This study aims to delve into the mechanisms of pancreatic cancer liver metastasis, with the goal of providing crucial scientific groundwork for the development of future treatment methods and drugs. Methods: We explored the mechanisms of pancreatic cancer liver metastasis using single-cell sequencing data (GSE155698 and GSE154778) and bulk data (GSE71729, GSE19279, TCGA-PAAD). Initially, Seurat package was employed for single-cell data processing to obtain expression matrices for primary pancreatic cancer lesions and liver metastatic lesions. Subsequently, high-dimensional weighted gene co-expression network analysis (hdWGCNA) was used to identify genes associated with liver metastasis. Machine learning algorithms and COX regression models were employed to further screen genes related to patient prognosis. Informed by both biological understanding and the outcomes of algorithms, we meticulously identified the ultimate set of liver metastasis-related gene (LRG). In the study of LRG genes, various databases were utilized to validate their association with pancreatic cancer liver metastasis. In order to analyze the effects of these agents on tumor microenvironment, we conducted an in-depth analysis, including changes in signaling pathways (GSVA), cell differentiation (pseudo-temporal analysis), cell communication networks (cell communication analysis), and downstream transcription factors (transcription factor activity prediction). Additionally, drug sensitivity analysis and metabolic analysis were performed to reveal the effects of LRG on gemcitabine resistance and metabolic pathways. Finally, functional experiments were conducted by silencing the expression of LRG in PANC-1 and Bx-PC-3 cells to validate its influence to proliferation and invasiveness on PANC-1 and Bx-PC-3 cells. Results: Through a series of algorithmic filters, we identified PAK2 as a key gene promoting pancreatic cancer liver metastasis. GSVA analysis elucidated the activation of the TGF-beta signaling pathway by PAK2 to promote the occurrence of liver metastasis. Pseudo-temporal analysis revealed a significant correlation between PAK2 expression and the lower differentiation status of pancreatic cancer cells. Cell communication analysis revealed that overexpression of PAK2 promotes communication between cancer cells and the tumor microenvironment. Transcription factor activity prediction displayed the transcription factor network regulated by PAK2. Drug sensitivity analysis and metabolic analysis revealed the impact of PAK2 on gemcitabine resistance and metabolic pathways. CCK8 experiments showed that silencing PAK2 led to a decrease in the proliferative capacity of pancreatic cancer cells and scratch experiments demonstrated that low expression of PAK2 decreased invasion capability in pancreatic cancer cells. Flow cytometry reveals that PAK2 significantly inhibited apoptosis in pancreatic cancer cell lines. Molecules related to the TGF-beta pathway decreased with the inhibition of PAK2, and there were corresponding significant changes in molecules associated with EMT. Conclusion: PAK2 facilitated the angiogenic potential of cancer cells and promotes the epithelial-mesenchymal transition process by activating the TGF-beta signaling pathway. Simultaneously, it decreased the differentiation level of cancer cells, consequently enhancing their malignancy. Additionally, PAK2 fostered communication between cancer cells and the tumor microenvironment, augments cancer cell chemoresistance, and modulates energy metabolism pathways. In summary, PAK2 emerged as a pivotal gene orchestrating pancreatic cancer liver metastasis. Intervening in the expression of PAK2 may offer a promising therapeutic strategy for preventing liver metastasis of pancreatic cancer and improving its prognosis.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Gencitabina , Proliferação de Células , Neoplasias Pancreáticas/patologia , Fatores de Transcrição , Fator de Crescimento Transformador beta/farmacologia , Neoplasias Hepáticas/genética , Microambiente Tumoral , Quinases Ativadas por p21/genética
5.
Dalton Trans ; 53(4): 1870-1877, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38179618

RESUMO

Developing advanced electrocatalysts toward the oxygen evolution reaction (OER) has always been recognized as the key challenge for green hydrogen production via water electrolysis due to the commonly required high OER overpotential. In this work, we report a branched FeCo-based hydroxide nanotube array (Fe-CoCH NT) synthesized by an ambient Fe-modification strategy, which could be used as a monolithic electrode for efficient OER catalysis. Its OER performance was even comparable to that of RuO2 with a low overpotential of 290 mV to attain a current density of 10 mA cm-2 due to its unique branched nanotube array structure and intrinsic high catalytic activity. Moreover, an acid-base hybrid electrolysis system was built based on this catalyst and an FeCo-based phosphide nanotube array electrode. By collecting electrochemical neutralization energy, this system just needs an ultralow cell voltage of 0.97 V to attain a current density of 10 mA cm-2 with a large decrease in energy consumption of 41.9% compared to traditional alkaline water splitting systems.

6.
J Agric Food Chem ; 72(3): 1756-1767, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38214269

RESUMO

Antimicrobial packing showed great potential in extending the shelf life of food. However, developing a new biocomposite film with an intelligent and efficient antimicrobial performance is still desirable. Herein, a Fe-MoOx encapsulated with curcumin (Cur) filled chitosan-based composite film (CCF films) was prepared by solvent casting method. The total color differences of the CCF films were less than 30%, and satisfactory surface color, transparency, hydrophobicity, and thermal stability were also obtained. Besides, the UV-light/water/oxygen barrier capability and mechanical properties were enhanced with the incorporation of Cur@Fe-MoOx. Moreover, CCF films showed photothermal performance and thermal-controlled curcumin release ability, which endowed the CCF0.15 film with excellent antibacterial capability toward E. coli (≥99.95%) and S. aureus (≥99.96%) due to the synergistic antibacterial effect. Fe-MoOx exhibited high cell viability and less than 5% hemolysis even under the concentration of 500 µg mL-1. Based on those unique characteristics, the CCF0.15 film was chosen for tangerine preservation. The CCF0.15 film could prolong the shelf life of tangerine by at least 9 days compared with the unpacking group, and the tangerines could maintain the freshness characteristics over a 24 day storage period. Such thermal-mediated antibacterial film proposed by our work showed promising potential in food packaging.


Assuntos
Anti-Infecciosos , Quitosana , Citrus , Curcumina , Escherichia coli , Staphylococcus aureus , Antibacterianos , Embalagem de Alimentos/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38198264

RESUMO

Margin distribution has been proven to play a crucial role in improving generalization ability. In recent studies, many methods are designed using large margin distribution machine (LDM), which combines margin distribution with support vector machine (SVM), such that a better performance can be achieved. However, these methods are usually proposed based on single-view data and ignore the connection between different views. In this article, we propose a new multiview margin distribution model, called MVLDM, which constructs both multiview margin mean and variance. Besides, a framework is proposed to achieve multiview learning (MVL). MVLDM provides a new way to explore the utilization of complementary information in MVL from the perspective of margin distribution and satisfies both the consistency principle and the complementarity principle. In the theoretical analysis, we used Rademacher complexity theory to analyze the consistency error bound and generalization error bound of the MVLDM. In the experiments, we constructed a new performance metric, the view consistency rate (VCR), for the characteristics of multiview data. The effectiveness of MVLDM was evaluated using both VCR and other traditional performance metrics. The experimental results show that MVLDM is superior to other benchmark methods.

8.
Chin Med ; 18(1): 150, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957754

RESUMO

BACKGROUND: In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS: C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS: BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS: Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.

9.
Anal Chem ; 95(46): 16958-16966, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37942854

RESUMO

Developing signal tracers (STAs) with large size, multifunctionality, and high retention bioaffinity is believed to be a potential solution for achieving high-performance immunochromatographic assays (ICAs). However, the size limitations of STAs on strips are always a challenge because of the serious steric hindrance. Here, based on metal-quinone coordination and further metal etching, hollow micron-tubular STAs formed by natural alizarin and Fe3+ ions (named ALIFe) are produced to break through size limitations, provide more active sites, and achieve three-mode ICAs (ALIFe STAs-ICAs). Thanks to the special tubular morphology, ALIFe can successfully pass through the strip and provide an ideal signal intensity within 7 min at low mAb and probe dosages to achieve stable ICA analysis. Importantly, ALIFe shows excellent antibody enrichment and bioaffinity retention capability. With a proof-of-concept for streptomycin, the ALIFe STAs-ICAs showed the limit of detection (LOD) at 0.39 ng mL-1 for colorimetric mode, 0.32 ng mL-1 for catalytic mode, and 0.016 ng mL-1 for photothermal mode with total recoveries ranging from 80.46 to 121.59% in mike and honey samples. We anticipate that our study will help expand the ideas for the design of high-performance STAs with large size and broaden the practical application of ICA.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Cromatografia de Afinidade/métodos , Limite de Detecção , Nanopartículas Metálicas/química
10.
Environ Technol ; : 1-13, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947794

RESUMO

Methylene blue (MB) is a prevalent pollutant in organic wastewater. For this research, eucalyptus wood was used as a template, into which quartz powder dissolved in NaOH was grown, resulting in a low-cost and efficient porous silica adsorbent material (PSAM). This PSAM successfully replaces expensive materials for MB removal from water. Through the application of Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, it became evident that PSAM displays a porous slit pore structure characterized by numerous active sites, leading to an impressive maximum specific surface area of 88.05 m²/g. The central objective of this research was to investigate the impact of experimental temperature, initial dye concentration, and pH on the adsorption process. The adsorption kinetics were analyzed using the pseudo-first-order and pseudo-second-order models, as well as the Langmuir model. Remarkably, PSAM exhibited a substantial maximum adsorption capacity of 90.01 mg/g at 293 K, achieving an adsorption rate of over 85% within a mere 10-minute timeframe. The thermodynamic analysis revealed that the adsorption of MB onto PSAM was characterized by spontaneity and accompanied by heat absorption. Fourier Transform Infrared (FTIR) and SEM comparisons of PSAM before and after adsorption indicated that MB adsorption primarily occurred through electrostatic gravitational binding. In comparison to other adsorbents, PSAM exhibited exceptional efficacy in removing MB from water.

11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 973-981, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879927

RESUMO

Ultra-rapid cooling and rewarming rate is a critical technical approach to achieve ice-free cells during the freezing and melting process. A set of ultra-rapid solid surface freeze-thaw visualization system was developed based on a sapphire flim, and experiments on droplet freeze-thaw were carried out under different cryoprotectant components, volumes and laser energies. The results showed that the cooling rate of 1 µL mixed cryoprotectant [1.5 mol/L propylene glycol (PG) + 1.5 mol/L ethylene glycol (EG) + 0.5 mol/L trehalose (TRE)] could be 9.2×10 3 °C/min. The volume range of 1-8 µL droplets could be vitrified. After comparing the proportions of multiple cryoprotectants, the combination of equal proportion mixed permeability protectant and trehalose had the best vitrification freezing effect and more uniform crystallization characteristics. During the rewarming operation, the heating curve of glassy droplets containing gold nanoparticles was measured for the first time under the action of 400-1 200 W laser power, and the rewarming rate was up to the order of 10 6 °C/min. According to the droplet images of different power rewarming processes, the laser power range for ice-free rewarming with micron-level resolution was clarified to be 1 400-1 600 W. The work of this paper simultaneously realizes the ultra-high-speed temperature ramp-up, transient visual observation and temperature measurement of droplets, providing technical means for judging the ice free droplets during the freeze-thaw process. It is conducive to promoting the development of ultra-rapid freeze-thaw technology for biological cells and tissues.


Assuntos
Nanopartículas Metálicas , Vitrificação , Congelamento , Criopreservação/métodos , Trealose , Ouro , Reaquecimento , Crioprotetores , Lasers
12.
Front Immunol ; 14: 1242909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753069

RESUMO

Background: In order to investigate the impact of Treg cell infiltration on the immune response against pancreatic cancer within the tumor microenvironment (TME), and identify crucial mRNA markers associated with Treg cells in pancreatic cancer, our study aims to delve into the role of Treg cells in the anti-tumor immune response of pancreatic cancer. Methods: The ordinary transcriptome data for this study was sourced from the GEO and TCGA databases. It was analyzed using single-cell sequencing analysis and machine learning. To assess the infiltration level of Treg cells in pancreatic cancer tissues, we employed the CIBERSORT method. The identification of genes most closely associated with Treg cells was accomplished through the implementation of weighted gene co-expression network analysis (WGCNA). Our analysis of single-cell sequencing data involved various quality control methods, followed by annotation and advanced analyses such as cell trajectory analysis and cell communication analysis to elucidate the role of Treg cells within the pancreatic cancer microenvironment. Additionally, we categorized the Treg cells into two subsets: Treg1 associated with favorable prognosis, and Treg2 associated with poor prognosis, based on the enrichment scores of the key genes. Employing the hdWGCNA method, we analyzed these two subsets to identify the critical signaling pathways governing their mutual transformation. Finally, we conducted PCR and immunofluorescence staining in vitro to validate the identified key genes. Results: Based on the results of immune infiltration analysis, we observed significant infiltration of Treg cells in the pancreatic cancer microenvironment. Subsequently, utilizing the WGCNA and machine learning algorithms, we ultimately identified four Treg cell-related genes (TRGs), among which four genes exhibited significant correlations with the occurrence and progression of pancreatic cancer. Among them, CASP4, TOB1, and CLEC2B were associated with poorer prognosis in pancreatic cancer patients, while FYN showed a correlation with better prognosis. Notably, significant differences were found in the HIF-1 signaling pathway between Treg1 and Treg2 cells identified by the four genes. These conclusions were further validated through in vitro experiments. Conclusion: Treg cells played a crucial role in the pancreatic cancer microenvironment, and their presence held a dual significance. Recognizing this characteristic was vital for understanding the limitations of Treg cell-targeted therapies. CASP4, FYN, TOB1, and CLEC2B exhibited close associations with infiltrating Treg cells in pancreatic cancer, suggesting their involvement in Treg cell functions. Further investigation was warranted to uncover the mechanisms underlying these associations. Notably, the HIF-1 signaling pathway emerged as a significant pathway contributing to the duality of Treg cells. Targeting this pathway could potentially revolutionize the existing treatment approaches for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Linfócitos T Reguladores , Humanos , Microambiente Tumoral/genética , Transcriptoma , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
13.
Front Endocrinol (Lausanne) ; 14: 1224832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608794

RESUMO

Background: Gastric cancer continues to be a significant global healthcare challenge, and its burden remains substantial. The development of gastric cancer (GC) is closely linked to chronic atrophic gastritis (CAG), yet there is a scarcity of research exploring the underlying mechanisms of CAG-induced carcinogenesis. Methods: In this study, we conducted a comprehensive investigation into the oncogenes involved in CAG using both bulk transcriptome and single-cell transcriptome data. Our approach employed hdWGCNA to identify pathogenic genes specific to CAG, with non-atrophic gastritis (NAG) serving as the control group. Additionally, we compared CAG with GC, using normal gastric tissue as the control group in the single-cell transcriptome analysis. By intersecting the identified pathogenic genes, we pinpointed key network molecules through protein interaction network analysis. To further refine the gene selection, we applied LASSO, SVM-RFE, and RF techniques, which resulted in a set of cancer-related genes (CRGs) associated with CAG. To identify CRGs potentially linked to gastric cancer progression, we performed a univariate COX regression analysis on the gene set. Subsequently, we explored the relationship between CRGs and immune infiltration, drug sensitivity, and clinical characteristics in gastric cancer patients. We employed GSVA to investigate how CRGs regulated signaling pathways in gastric cancer cells, while an analysis of cell communication shed light on the impact of CRGs on signal transmission within the gastric cancer tumor microenvironment. Lastly, we analyzed changes in metabolic pathways throughout the progression of gastric cancer. Results: Using hdWGCNA, we have identified a total of 143 pathogenic genes that were shared by CAG and GC. To further investigate the underlying mechanisms, we conducted protein interaction network analysis and employed machine learning screening techniques. As a result, we have identified 15 oncogenes that are specifically associated with chronic atrophic gastritis. By performing ROC reanalysis and prognostic analysis, we have determined that GADD45B is the most significant gene involved in the carcinogenesis of CAG. Immunohistochemical staining and differential analysis have revealed that GADD45B expression was low in GC tissues while high in normal gastric tissues. Moreover, based on prognostic analysis, high expression of GADD45B has been correlated with poor prognosis in GC patients. Additionally, an analysis of immune infiltration has shown a relationship between GADD45B and the infiltration of various immune cells. By correlating GADD45B with clinical characteristics, we have found that it primarily affects the depth of invasion in GC. Through cell communication analysis, we have discovered that the CD99 signaling pathway network and the CDH signaling pathway network are the main communication pathways that significantly alter the microenvironment of gastric tissue during the development of chronic atrophic gastritis. Specifically, GADD45B-low GC cells were predominantly involved in the network communication of the CDH signaling pathway, while GADD45B-high GC cells played a crucial role in both signaling pathways. Furthermore, we have identified several metabolic pathways, including D-Glutamine and D-glutamate metabolism and N-Glycan biosynthesis, among others, that played important roles in the occurrence and progression of GC, in addition to the six other metabolic pathways. In summary, our study highlighted the discovery of 143 pathogenic genes shared by CAG and GC, with a specific focus on 15 oncogenes associated with CAG. We have identified GADD45B as the most important gene in the carcinogenesis of CAG, which exhibited differential expression in GC tissues compared to normal gastric tissues. Moreover, GADD45B expression was correlated with patient prognosis and is associated with immune cell infiltration. Our findings also emphasized the impact of the CD99 and CDH signaling pathway networks on the microenvironment of gastric tissue during the development of CAG. Additionally, we have identified key metabolic pathways involved in GC progression. Conclusion: GADD45B, an oncogene implicated in chronic atrophic gastritis, played a critical role in GC development. Decreased expression of GADD45B was associated with the onset of GC. Moreover, GADD45B expression levels were closely tied to poor prognosis in GC patients, influencing the infiltration patterns of various cells within the tumor microenvironment, as well as impacting the metabolic pathways involved in GC progression.


Assuntos
Gastrite , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Oncogenes , Carcinogênese/genética , Mapas de Interação de Proteínas , Microambiente Tumoral , Antígenos de Diferenciação
14.
Phytomedicine ; 119: 154974, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523838

RESUMO

BACKGROUND: The Chinese herbal prescription Cuyun Recipe (CYR) has been widely used to treat clinical infertility and has shown good efficacy. Animal experiments have shown that CYR can promote implantation in mice, however, the exact mechanism underlying the implantation has not been elucidated. PURPOSE: To investigate the effect and mechanism of CYR on regulating macrophage polarization and hypercoagulability during the peri-implantation period in mice with ovarian hyperstimulation. METHODS: An ovarian hyperstimulation mouse model was developed, followed by treatment with CYR. Mice were sacrificed on day (D)4.5, D6, or D8 of gestation. The number of implantation sites, the pathological changes of the uterus and ovaries were assessed. The polarization of monocytes/macrophages in the spleen and endometrium, the expression and localization of cytokines were further detected. Furthermore, analyses of hypercoagulable state of the blood were also performed. RESULTS: Treatment with CYR increased the average number of implantation sites, promoted angiogenesis in endometrial, and regulated monocytes/macrophages and the cytokine levels. Moreover, CYR downregulated the overexpression of D-dimer and fgl2 after ovarian hyperstimulation. CONCLUSION: CYR facilitates embryo implantation by alleviating ovarian hyperstimulation, promoting endometrial decidualization and angiogenesis, regulating macrophage polarization, and reversing the hypercoagulable state of the blood.


Assuntos
Implantação do Embrião , Trombofilia , Gravidez , Feminino , Camundongos , Animais , Útero , Endométrio , Trombofilia/tratamento farmacológico , Trombofilia/metabolismo , Trombofilia/patologia , Macrófagos
15.
Front Mol Neurosci ; 16: 1166875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187956

RESUMO

Background: Intracerebral hemorrhage (ICH) is a severe subtype of stroke lacking effective pharmacological targets. Long noncoding RNA (lncRNA) has been confirmed to participate in the pathophysiological progress of various neurological disorders. However, how lncRNA affects ICH outcomes in the acute phase is not completely clear. In this study, we aimed to reveal the relationship of lncRNA-miRNA-mRNA following ICH. Method: We conducted the autologous blood injection ICH model and extracted total RNAs on day 7. Microarray scanning was used to obtain mRNA and lncRNA profiles, which were validated by RT-qPCR. GO/KEGG analysis of differentially expressed mRNAs was performed using the Metascape platform. We calculated the Pearson correlation coefficients (PCCs) of lncRNA-mRNA for co-expression network construction. A competitive endogenous (Ce-RNA) network was established based on DIANALncBase and miRDB database. Finally, the Ce-RNA network was visualized and analyzed by Cytoscape. Results: In total, 570 differentially expressed mRNAs and 313 differentially expressed lncRNAs were identified (FC ≥ 2 and value of p <0.05). The function of differentially expressed mRNAs was mainly enriched in immune response, inflammation, apoptosis, ferroptosis, and other typical pathways. The lncRNA-mRNA co-expression network contained 57 nodes (21 lncRNAs and 36 mRNAs) and 38 lncRNA-mRNA pairs. The ce-RNA network was generated with 303 nodes (29 lncRNAs, 163 mRNAs, and 111 miRNAs) and 906 edges. Three hub clusters were selected to indicate the most significant lncRNA-miRNA-mRNA interactions. Conclusion: Our study suggests that the top differentially expressed RNA molecules may be the biomarker of acute ICH. Furthermore, the hub lncRNA-mRNA pairs and lncRNA-miRNA-mRNA correlations may provide new clues for ICH treatment.

16.
Anal Chem ; 95(10): 4803-4809, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36867104

RESUMO

Limited by the efficiency of electrochemiluminescence, tens of seconds of exposure time are typically required to get a high-quality image. Image enhancement of short exposure time images to obtain a well-defined electrochemiluminescence image can meet the needs of high-throughput or dynamic imaging. Here, we propose deep enhanced ECL microscopy (DEECL), a general strategy that utilizes artificial neural networks to reconstruct electrochemiluminescence images with millisecond exposure times to have similar quality as high-quality electrochemiluminescence images with second-long exposure time. Electrochemiluminescence imaging of fixed cells demonstrates that DEECL allows improvement of the imaging efficiency by 1 to 2 orders than usual. This approach is further used for a data-intensive analysis application, cell classification, achieving an accuracy of 85% with ECL data at an exposure time of 50 ms. We anticipate that the computationally enhanced electrochemiluminescence microscopy will enable fast and information-rich imaging and prove useful for understanding dynamic chemical and biological processes.


Assuntos
Aprendizado Profundo , Microscopia , Microscopia/métodos , Redes Neurais de Computação , Fotometria , Aumento da Imagem
17.
Angew Chem Int Ed Engl ; 62(7): e202214419, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36504245

RESUMO

A single-molecule electrochemiluminescence bioassay is developed here which allows imaging and direct quantification of single biomolecules. Imaging single biomolecules is realized by localizing the electrochemiluminescence events of the labeled molecules. Such an imaging system allows mapping the spatial distribution of biomolecules with electrochemiluminescence and contains quantitative single-molecule insights. We further quantify biomolecules by spatiotemporally merging the repeated reactions at one molecule site and then counting the clustered molecules. The proposed single-molecule electrochemiluminescence bioassay is used to detect carcinoembryonic antigen, showing a limit of detection of 67 attomole concentration which is 10 000 times better than conventional electrochemiluminescence bioassays. This spatial resolution and sensitivity enable single-molecule electrochemiluminescence bioassay a new toolbox for both specific bioimaging and ultrasensitive quantitative analysis.


Assuntos
Diagnóstico por Imagem , Nanotecnologia , Bioensaio
18.
Int J Exp Pathol ; 104(1): 23-32, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583453

RESUMO

Sepsis remains a worldwide public health problem. This study aims to explore the role and mechanism of transcriptional factors (TFs) in sepsis-induced myocardial injury. Firstly, TF KLF13 was selected to explore its role in sepsis-induced myocardial injury. The caecal ligation and puncture (CLP) -induced sepsis mouse model was established and the septic mice were examined using standard histopathological methods. KLF13 expression was detected in the septic mouse heart and was also seen in a lipoploysaccharide (LPS) -induced cellular inflammation model. To explore this further both pro-apoptotic cleaved-caspase3/caspase3 and Bax levels and anti-apoptotic Bcl2 levels were examined, also in both models, In addition inflammatory cytokine (IL-1ß, TNF-α, IL-8 and MCP-1) production and IκB-α protein level and p65 phosphorylation were examined in both septic mice and LPS-induced cells. Thus three parameters - cardiomyocyte apoptosis, inflammatory response and NF-κB pathway activation were evaluated under similar conditions. The septic mice showed significant oedema, disordered myofilament arrangement and degradation and necrosis to varying degrees in the myocardial cells. KLF13 was downregulated in both the septic mouse heart and the LPS-induced cellular inflammation model. Furthermore, both models showed abnormally increased cardiomyocyte apoptosis (increased cleaved-caspase3/caspase and Bax protein levels and decreased Bcl2 level), elevated inflammation (increased production of inflammatory cytokines) and the activated NF-κB pathway (increased p65 phosphorylation and decreased IκB-α protein level). KLF13 overexpression notably ameliorated sepsis-induced myocardial injury in vivo and in vitro. KLF13 overexpression protected against sepsis-induced myocardial injury and LPS-induced cellular inflammation and apoptosis via inhibiting the inflammatory pathways (especially NF-κB signalling) and cardiomyocyte apoptosis.


Assuntos
Apoptose , Fatores de Transcrição Kruppel-Like , Miocárdio , NF-kappa B , Sepse , Animais , Camundongos , Inflamação/patologia , Lipopolissacarídeos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Sepse/complicações , Fatores de Transcrição Kruppel-Like/genética , Miocárdio/patologia
19.
Front Oncol ; 12: 1001307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479092

RESUMO

Background: Gastric cancer is still one of the most lethal tumor diseases in the world. Despite some improvements, the prognosis of patients with gastric cancer is still not accurately predicted. Methods: Based on single cell sequencing data, we conducted a detailed analysis of gastric cancer patients and normal tissues to determine the role of monocytes in the progression of gastric cancer. WCGA facilitated our search for Grade-related genes in TCGA. Then, according to the marker genes and cell differentiation genes of monocytes, we determined the cancer-promoting genes of monocytes. Based on LASSO regression, we established a prognostic model using TCGA database. The accuracy of the model was verified by PCA, ROC curve, survival analysis and prognostic analysis. Finally, we evaluated the significance of the model in clinical diagnosis and treatment by observing drug sensitivity, immune microenvironment and immune checkpoint expression in patients with different risk groups. Results: Monocytes were poorly differentiated in tumor microenvironment. It mainly played a role in promoting cancer in two ways. One was to promote tumor progression indirectly by interacting with other tumor stromal cells. The other was to directly connect with tumor cells through the MIF and TNF pathway to play a tumor-promoting role. The former was more important in these two ways. A total of 292 monocyte tumor-promoting genes were obtained, and 12 genes were finally included in the construction of the prognosis model. A variety of validation methods showed that our model had an accurate prediction ability. Drug sensitivity analysis could provide guidance for clinical medication of patients. The results of immune microenvironment and immune checkpoint also indicated the reasons for poor prognosis of high-risk patients. Conclusion: In conclusion, we provided a 12-gene risk score formula and nomogram for gastric cancer patients to assist clinical drug therapy and prognosis prediction. This model had good accuracy and clinical significance.

20.
Front Med (Lausanne) ; 9: 978272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117981

RESUMO

Objectives: To evaluate the immunogenicity of the third dose of inactivated SARS-CoV-2 vaccine in rheumatoid arthritis (RA) patients and explore the effect of RA drugs on vaccine immunogenicity. Methods: We recruited RA patients (n = 222) and healthy controls (HC, n = 177) who had been injected with a third dose of inactivated SARS-CoV-2 vaccine, and their neutralizing antibody (NAb) titer levels were assessed. Results: RA patients and HC were age- and gender-matched, and the mean interval between 3rd vaccination and sampling was comparable. The NAb titers were significantly lower in RA patients after the third immunization compared with HC. The positive rate of NAb in HC group was 90.4%, while that in RA patients was 80.18%, and the difference was significant. Furthermore, comparison of NAb titers between RA treatment subgroups and HC showed that the patients in the conventional synthetic (cs) disease-modifying anti-rheumatic drugs (DMARDs) group exhibited no significant change in NAb titers, while in those receiving the treatment of biological DMARDs (bDMARDs), Janus Kinase (JAK) inhibitors, and prednisone, the NAb titers were significantly lower. Spearman correlation analysis revealed that NAb responses to SARS-CoV-2 in HC did differ significantly according to the interval between 3rd vaccination and sampling, but this finding was not observed in RA patients. In addition, NAb titers were not significantly correlated with RA-related laboratory indicators, including RF-IgA, RF-IgG, RF-IgM, anti-CCP antibody; C-RP; ESR; NEUT% and LYMPH%. Conclusion: Serum antibody responses to the third dose of vaccine in RA patients were weaker than HC. Our study will help to evaluate the efficacy and safety of booster vaccination in RA patients and provide further guidance for adjusting vaccination strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA