Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 802098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774459

RESUMO

In an effort to control the outbreak of the African Swine Fever Virus (ASFV), there is an urgent need to develop an effective method to prevent the pandemic, including vaccines and diagnostic methods. The major capsid protein of ASFV p72 (B646L), which forms a trimer with each monomer adopting a double jelly roll fold, is the main component of the virus particle and major antigen of ASFV. Thus, the p72 protein may be considered an antigen candidate for vaccine and diagnostic development. However, the development of ASFV p72 trimer for the industry application, including veterinary usage, faces unavoidable challenges: firstly, the low cost of the antigen production is required in vaccine and diagnostic application; and, secondly, whether produced antigen folds in its native conformation. Here, based on the information provided by the atomic structure of p72, we have successfully performed rational mutagenesis on p72 trimers and expressed it in Saccharomyces cerevisiae with high yields. The cryo-EM structure of recombinant expressed p72 trimer is determined at 4.18 Å in resolution. The correlation coefficient between this structure and the ASFV virus structure is 0.77, suggesting a highly similar fold of this trimer with the native protein on the virus particle.

2.
Cell Host Microbe ; 29(12): 1788-1801.e6, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822776

RESUMO

Previous work found that the co-occurring mutations R203K/G204R on the SARS-CoV-2 nucleocapsid (N) protein are increasing in frequency among emerging variants of concern or interest. Through a combination of in silico analyses, this study demonstrates that R203K/G204R are adaptive, while large-scale phylogenetic analyses indicate that R203K/G204R associate with the emergence of the high-transmissibility SARS-CoV-2 lineage B.1.1.7. Competition experiments suggest that the 203K/204R variants possess a replication advantage over the preceding R203/G204 variants, possibly related to ribonucleocapsid (RNP) assembly. Moreover, the 203K/204R virus shows increased infectivity in human lung cells and hamsters. Accordingly, we observe a positive association between increased COVID-19 severity and sample frequency of 203K/204R. Our work suggests that the 203K/204R mutations contribute to the increased transmission and virulence of select SARS-CoV-2 variants. In addition to mutations in the spike protein, mutations in the nucleocapsid protein are important for viral spreading during the pandemic.


Assuntos
Substituição de Aminoácidos , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral , Mutação , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Cricetulus , Células Epiteliais/patologia , Células Epiteliais/virologia , Expressão Gênica , Aptidão Genética , Humanos , Modelos Moleculares , Mutagênese , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Conformação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Seleção Genética , Índice de Gravidade de Doença , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/patogenicidade , Virulência , Replicação Viral
3.
Front Chem ; 9: 804981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047481

RESUMO

African swine fever is a widespread and highly contagious disease in the porcine population, which is caused by African swine fever virus (ASFV). The PCR and ELISA detection methods are the main conventional diagnostic methods for ASFV antigen/antibody detection in the field. However, these methods have limitations of expensive equipment, trained technicians, and time-consuming results. Thus, a rapid, inexpensive, accurate and on-site detection method is urgently needed. Here we describe a double-antigen-sandwich lateral-flow assay based on gold nanoparticle-conjugated ASFV major capsid protein p72, which can detect ASFV antibody in serum samples with high sensitivity and specificity in 10 min and the results can be determined by naked eyes. A lateral flow assay was established by using yeast-expressed and acid-treated ASFV p72 conjugated with gold nanoparticles, which are synthesized by seeding method. A high coincidence (97.8%) of the assay was determined using clinical serum compared to a commercial ELISA kit. In addition, our lateral flow strip can detect as far as 1:10,000 diluted clinically positive serum for demonstration of high sensitivity. In summary, the assay developed here was shown to be rapid, inexpensive, accurate and highly selective. It represents a reliable method for on-site ASFV antibody detection and may help to control the ASFV pandemic.

5.
Artigo em Inglês | MEDLINE | ID: mdl-21543880

RESUMO

LidA, a translocated substrate of the Legionella pneumophila Dot/Icm type IV secretion system, is associated with maintenance of bacterial integrity and interferes with the early secretory pathway. However, the precise mechanism of LidA in these processes remains elusive. To further investigate the structure and function of LidA, the full-length protein was successfully expressed in Escherichia coli and purified. LidA was crystallized using sitting-drop vapour diffusion and diffracted to a resolution of 2.75 Å. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 57.5, b = 64.5, c = 167.3 Å, α = ß = γ = 90°. There is one molecule per asymmetric unit.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/química , Cristalização , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA