Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201480

RESUMO

Aging is a prominent risk factor for numerous chronic diseases. Understanding the shared mechanisms of aging can aid in pinpointing therapeutic targets for age-related disorders. Chronic inflammation has emerged as a pivotal mediator of aging and a determinant in various age-related chronic conditions. Recent findings indicate that C-C motif chemokine ligand 2 and receptor 2 (CCL2-CCR2) signaling, an important physiological modulator in innate immune response and inflammatory defense, plays a crucial role in aging-related disorders and is increasingly recognized as a promising therapeutic target, highlighting its significance. This review summarizes recent advances in the investigation of CCL2-CCR2 signaling in cardiovascular and neural aging, as well as in various aging-related disorders. It also explores the underlying mechanisms and therapeutic potentials in these contexts. These insights aim to deepen our understanding of aging pathophysiology and the development of aging-related diseases.


Assuntos
Envelhecimento , Doenças Cardiovasculares , Quimiocina CCL2 , Receptores CCR2 , Humanos , Envelhecimento/metabolismo , Receptores CCR2/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Quimiocina CCL2/metabolismo , Transdução de Sinais , Inflamação/metabolismo
2.
Circ Res ; 135(7): 777-798, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39145385

RESUMO

BACKGROUND: Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI). METHODS: A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot. RESULTS: The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-ß-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression. CONCLUSIONS: Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.


Assuntos
Apelina , Infarto do Miocárdio , Animais , Masculino , Camundongos , Apelina/administração & dosagem , Apelina/metabolismo , Apelina/farmacologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
3.
JCI Insight ; 9(15)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916964

RESUMO

Little is known about the expression patterns and functions of circular RNAs (circRNAs) in the heart of large mammals. In this study, we examined the expression profiles of circRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in neonatal pig hearts. Pig heart samples collected on postnatal days 1 (P1), 3 (P3), 7 (P7), and 28 (P28) were sent for total RNA sequencing. Our data revealed a total of 7,000 circRNAs in the 24 pig hearts. Pathway enrichment analysis of hallmark gene sets demonstrated that differentially expressed circRNAs were engaged in different pathways. The most significant difference was observed between P1 and the other 3 groups (P3, P7, and P28) in pathways related to cell cycle and muscle development. Out of the 10 circRNAs that were validated through real-time quantitative PCR to verify their expression, 6 exhibited significant effects on cell cycle activity in human induced pluripotent stem cell-derived cardiomyocytes following small interfering RNA-mediated knockdown. circRNA-miRNA-mRNA networks were constructed to understand the potential mechanisms of circRNAs in the heart. In conclusion, our study provided a data set for exploring the roles of circRNAs in pig hearts. In addition, we identified several circRNAs that regulate cardiomyocyte cell cycle.


Assuntos
Animais Recém-Nascidos , Proliferação de Células , MicroRNAs , Miócitos Cardíacos , RNA Circular , Animais , RNA Circular/genética , RNA Circular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Suínos , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
4.
Small Methods ; : e2301764, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708688

RESUMO

The objective of the current study is to develop a new method for tracking transplanted human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) using magnetic resonance imaging (MRI). The CRISPR/dCas9 activation system is employed to overexpress ferritin heavy chain (FHC) in hiPSC-CMs. The mRNA and protein expression of FHC in hiPSC and hiPSC-CMs significantly increased after transfection. Iron chloride does not affect the cell viability in a concentration range from 0 to 2000 µm. hiPSCs overexpressing FHC (hiPSC- FHCOE) and hiPSC-CMs overexpressing FHC (hiPSC-CM-FHCOE) significantly enhanced cellular uptake of iron chloride but with no changes in electrophysiological properties compared to hiPSC-CM-Control. Furthermore, hiPSC-CM-FHCOE presented robust contrast and lower T2* values, signifying their potential as highly effective candidates for cardiac MRI. Next, hiPSC-CM-FHCOE is injected into mouse hearts and after 3 days of transplantation, MR images are obtained. hiPSC-CM-FHCOE cells exhibited clear signals in the hearts with lower T2* and rapid signal decay. Collectively, data from this proof-of-concept study demonstrated that endogenous labeling with FHC in hiPSC-CMs can be a potent strategy for enhancing the accuracy of cardiac MRI. This technology represents a significant step forward in tracking the transplanted hiPSC-CMs in the hearts of live animals.

5.
ACS Biomater Sci Eng ; 10(4): 2351-2366, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38323834

RESUMO

Electrically conductive biomaterials and nanomaterials have demonstrated great potential in the development of functional and mature cardiac tissues. In particular, gold nanomaterials have emerged as promising candidates due to their biocompatibility and ease of fabrication for cardiac tissue engineering utilizing rat- or stem cell-derived cardiomyocytes (CMs). However, despite significant advancements, it is still not clear whether the enhancement in cardiac tissue function is primarily due to the electroconductivity features of gold nanoparticles or the structural changes of the scaffold resulting from the addition of these nanoparticles. To address this question, we developed nanoengineered hydrogel scaffolds comprising gelatin methacrylate (GelMA) embedded with either electrically conductive gold nanorods (GNRs) or nonconductive silica nanoparticles (SNPs). This enabled us to simultaneously assess the roles of electrically conductive and nonconductive nanomaterials in the functionality and fate of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our studies revealed that both GNR- and SNP-incorporated hydrogel scaffolds exhibited excellent biocompatibility and similar cardiac cell attachment. Although the expression of sarcomere alpha-actinin did not significantly differ among the conditions, a more organized sarcomere structure was observed within the GNR-embedded hydrogels compared to the nonconductive nanoengineered scaffolds. Furthermore, electrical coupling was notably improved in GNR-embedded scaffolds, as evidenced by the synchronous calcium flux and enhanced calcium transient intensity. While we did not observe a significant difference in the gene expression profile of human cardiac tissues formed on the conductive GNR- and nonconductive SNP-incorporated hydrogels, we noticed marginal improvements in the expression of some calcium and structural genes in the nanomaterial-embedded hydrogel groups as compared to the control condition. Given that the cardiac tissues formed atop the nonconductive SNP-based scaffolds (used as the control for conductivity) also displayed similar levels of gene expression as compared to the conductive hydrogels, it suggests that the electrical conductivity of nanomaterials (i.e., GNRs) may not be the sole factor influencing the function and fate of hiPSC-derived cardiac tissues when cells are cultured atop the scaffolds. Overall, our findings provide additional insights into the role of electrically conductive gold nanoparticles in regulating the functionalities of hiPSC-CMs.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Humanos , Ratos , Animais , Engenharia Tecidual/métodos , Ouro , Dióxido de Silício , Hidrogéis/química , Cálcio/metabolismo , Células-Tronco
6.
Nat Commun ; 15(1): 1080, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316777

RESUMO

The structure and design flexibility of aerogels make them promising for soft tissue engineering, though they tend to come with brittleness and low elasticity. While increasing crosslinking density may improve mechanics, it also imparts brittleness. In soft tissue engineering, resilience against mechanical loads from mobile tissues is paramount. We report a hybrid aerogel that consists of self-reinforcing networks of micro- and nanofibers. Nanofiber segments physically entangle microfiber pillars, allowing efficient stress distribution through the intertwined fiber networks. We show that optimized hybrid aerogels have high specific tensile moduli (~1961.3 MPa cm3 g-1) and fracture energies (~7448.8 J m-2), while exhibiting super-elastic properties with rapid shape recovery (~1.8 s). We demonstrate that these aerogels induce rapid tissue ingrowth, extracellular matrix deposition, and neovascularization after subcutaneous implants in rats. Furthermore, we can apply them for engineering soft tissues via minimally invasive procedures, and hybrid aerogels can extend their versatility to become magnetically responsive or electrically conductive, enabling pressure sensing and actuation.


Assuntos
Nanofibras , Resiliência Psicológica , Ratos , Animais , Nanofibras/química , Elasticidade , Engenharia Tecidual/métodos
7.
Biology (Basel) ; 13(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38248477

RESUMO

BACKGROUND: Nanoparticles (NPs) have been extensively utilized as a drug delivery system to control the release of therapeutic agents to treat cardiac injuries. However, despite the advantages of utilizing NP-based drug delivery for treating heart diseases, the current delivery system lacks specificity in targeting the cardiac tissue, thus limiting its application. METHODS: We created three linear peptides, each consisting of 16-24 amino acids. These peptides were conjugated on the surface of NPs, resulting in the formation of cardiac targeting peptide (CTP)-NPs (designated as CTP-NP1, CTP-NP2, and CTP-NP3). To assess their effectiveness, we compared the binding efficiency of these three CTP-NPs to human and mouse cardiomyocytes. Additionally, we determined their distribution 24 h after injecting the CTP-NPs intravenously into adult C57BL/6J mice. RESULTS: When compared to control NPs without CTP (Con-NPs), all three CTP-NPs exhibited significantly increased binding affinity to both human and mouse cardiomyocytes in vitro and enhanced retention in mouse hearts in vivo. A thorough assessment of the heart sections demonstrated that the binding specificity of CTP-NP3 to cardiomyocytes in vivo was significantly greater than that of Con-NPs. None of the three CTP-NPs were proven to cause cardiomyocyte apoptosis. CONCLUSIONS: Biocompatible and safe CTP-NP3 can target the heart via binding to cardiomyocytes. This approach of targeting specific molecules-coated NPs may help in delivering therapeutic compounds to cardiomyocytes for the treatment of heart diseases with high efficacy and low toxicity to other tissues.

8.
Biology (Basel) ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37997983

RESUMO

An estimated 64 [...].

9.
Biology (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671774

RESUMO

Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.

10.
J Mol Cell Cardiol ; 176: 33-40, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657638

RESUMO

The neonatal swine heart possesses an endogenous ability to regenerate injured myocardium through the proliferation of pre-existing cardiomyocyte (CM) populations. However, this regenerative capacity is lost shortly after birth. Normal postnatal developmental processes and the regenerative capacity of mammalian hearts are tightly linked, but not much is known about how the swine cardiac proteome changes throughout postnatal development. Herein, we integrated robust and quantitative targeted "top-down" and global "bottom-up" proteomic workflows to comprehensively define the dynamic landscape of the swine cardiac proteome throughout postnatal maturation. Using targeted top-down proteomics, we were able to identify significant alterations in sarcomere composition, providing new insight into the proteoform landscape of sarcomeres that can disassemble, a process necessary for productive CM proliferation. Furthermore, we quantified global changes in protein abundance using bottom-up proteomics, identified over 700 differentially expressed proteins throughout postnatal development, and mapped these proteins to changes in developmental and metabolic processes. We envision these results will help guide future investigations to comprehensively understand endogenous cardiac regeneration toward the development of novel therapeutic strategies for heart failure.


Assuntos
Proteoma , Sarcômeros , Animais , Suínos , Sarcômeros/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Coração , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Mamíferos/metabolismo
11.
Curr Probl Diagn Radiol ; 52(5): 340-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36473799

RESUMO

Neuroendocrine tumors (NET) may affect the heart by cardiac metastasis or carcinoid heart disease. NET metastasis to the heart is rare, with limited data characterizing it. We sought to evaluate 68Ga-DOTATATE PET scan imaging features and associated cardiac imaging characteristics where available in those with NET cardiac metastases. 68Ga-DOTATATE positron emission tomography (PET)/CT scans performed on patients with gastroenteropancreatic (GEP) NET at our institution were reviewed for cardiac involvement. Those identified with cardiac metastases had their electronic medical record, transthoracic echocardiogram (TTE) and cardiac magnetic resonance imaging (MRI) reviewed for characterization. From a total of 1426 68Ga-DOTATATE PET/CT scans performed on patients with GEP-NET, 25 (1.75%) had cardiac uptake consistent with metastasis. Of these, 22 had myocardial metastases (29 distinct myocardial lesions: left ventricle - 16, right ventricle - 6, and ventricular septum -7) and 3 had periradial lymph node involvement only. NET patients with cardiac metastases as identified by DOTATATE scan did not appear to have any hemodynamically significant TTE features, aside from those (2/25) who had concomitant carcinoid heart disease. Of the 14 patients who had available TTE for review, only one with high metastatic cardiac tumor burden had detectable cardiac mass. Of the 6 cases who had available MRI, all had metastatic cardiac lesions seen with excellent correlation with tumor localization on 68Ga-DOTATATE PET scan. 68Ga-DOTATATE PET has excellent capability for the diagnosis of cardiac NET metastasis. Cardiac MRI may provide further anatomic and tissue characterization evaluation. Those with myocardial NET metastases without carcinoid heart disease did not have significant hemodynamic effect based on echocardiographic criteria.

12.
ACS Biomater Sci Eng ; 9(2): 944-958, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36583992

RESUMO

The prevalence of cardiovascular risk factors is expected to increase the occurrence of cardiovascular diseases (CVDs) worldwide. Cardiac organoids are promising candidates for bridging the gap between in vitro experimentation and translational applications in drug development and cardiac repair due to their attractive features. Here we present the fabrication and characterization of isogenic scaffold-free cardiac organoids derived from human induced pluripotent stem cells (hiPSCs) formed under a supplement-deprivation regimen that allows for metabolic synchronization and maturation of hiPSC-derived cardiac cells. We propose the formation of coculture cardiac organoids that include hiPSC-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts (hiPSC-CMs and hiPSC-CFs, respectively). The cardiac organoids were characterized through extensive morphological assessment, evaluation of cellular ultrastructures, and analysis of transcriptomic and electrophysiological profiles. The morphology and transcriptomic profile of the organoids were improved by coculture of hiPSC-CMs with hiPSC-CFs. Specifically, upregulation of Ca2+ handling-related genes, such as RYR2 and SERCA, and structure-related genes, such as TNNT2 and MYH6, was observed. Additionally, the electrophysiological characterization of the organoids under supplement deprivation shows a trend for reduced conduction velocity for coculture organoids. These studies help us gain a better understanding of the role of other isogenic cells such as hiPSC-CFs in the formation of mature cardiac organoids, along with the introduction of exogenous chemical cues, such as supplement starvation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas , Organoides
13.
Mol Diagn Ther ; 27(2): 129-140, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512179

RESUMO

Heart disease is the primary cause of death worldwide. Even though extensive research has been done, and many pharmacological and surgical treatments have been introduced to treat heart disease, the mortality rate still remains high. Gene therapy is widely used to understand molecular mechanisms of myocardial infarction and to treat cardiomyocyte loss. It was reported that adult cardiomyocytes proliferate at a very low rate; thus, targeting their proliferation has become a new regenerative therapeutic approach. Currently, re-activating cardiomyocyte proliferation appears to be one of the most promising methods to promote adult cardiomyocyte renewal. In this article, we highlight gene therapeutic targets of cell proliferation presently being pursued to re-activate the cell cycle of cardiomyocytes, including cell cycle regulators, transcription factors, microRNAs, signal transduction, and other contributing factors. We also summarize gene delivery vectors that have been used in cardiac research and major challenges to be overcome in the translation to the clinical approach and future directions.


Assuntos
Cardiopatias , Infarto do Miocárdio , Humanos , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Ciclo Celular , Cardiopatias/metabolismo , Proliferação de Células , Terapia Genética
14.
iScience ; 25(6): 104447, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35707727

RESUMO

Acute myocardial infarction is a leading cause of death worldwide. We have previously identified two cardioprotective molecules - FGF1 and CHIR99021- that confer cardioprotection in mouse and pig models of acute myocardial infarction. Here, we aimed to determine if improved myocardial metabolism contributes to this cardioprotection. Nanofibers loaded with FGF1 and CHIR99021 were intramyocardially injected to ischemic myocardium of adult mice immediately following surgically induced myocardial infarction. Animals were euthanized 3 and 7 days later. Our data suggested that FGF1/CHIR99021 nanofibers enhanced the heart's capacity to utilize glycolysis as an energy source and reduced the accumulation of branched-chain amino acids in ischemic myocardium. The impact of FGF1/CHIR99021 on metabolism was more obvious in the first three days post myocardial infarction. Taken together, these findings suggest that FGF1/CHIR99021 protects the heart against ischemic injury via improving myocardial metabolism which may be exploited for treatment of acute myocardial infarction in humans.

15.
J Mol Cell Cardiol ; 170: 15-21, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660800

RESUMO

Patients with acute myocardial infarction (MI) could progress to end-stage congestive heart failure, which is one of the most significant problems in public health. From the molecular and cellular perspective, heart failure often results from the loss of cardiomyocytes-the fundamental contractile unit of the heart-and the damage caused by myocardial injury in adult mammals cannot be repaired, in part because mammalian cardiomyocytes undergo cell-cycle arrest during the early perinatal period. However, recent studies in the hearts of neonatal small and large mammals suggest that the onset of cardiomyocyte cell-cycle arrest can be reversed, which may lead to the development of entirely new strategies for the treatment of heart failure. In this Viewpoint, we summarize these and other provocative findings about the cellular and molecular mechanisms that regulate cardiomyocyte proliferation and how they may be targeted to turn back the clock of cardiomyocyte cell-cycle arrest and improve recovery from cardiac injury and disease.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Adulto , Animais , Ciclo Celular , Divisão Celular , Proliferação de Células , Feminino , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Humanos , Recém-Nascido , Mamíferos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Gravidez
16.
Acta Biomater ; 146: 211-221, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513306

RESUMO

Accurate and rapid point-of-care tissue and microbiome sampling is critical for early detection of cancers and infectious diseases and often result in effective early intervention and prevention of disease spread. In particular, the low prevalence of Barrett's and gastric premalignancy in the Western world makes population-based endoscopic screening unfeasible and cost-ineffective. Herein, we report a method that may be useful for prescreening the general population in a minimally invasive way using a swallowable, re-expandable, ultra-absorbable, and retrievable nanofiber cuboid and sphere produced by electrospinning, gas-foaming, coating, and crosslinking. The water absorption capacity of the cuboid- and sphere-shaped nanofiber objects is shown ∼6000% and ∼2000% of their dry mass. In contrast, unexpanded semicircular and square nanofiber membranes showed <500% of their dry mass. Moreover, the swallowable sphere and cuboid were able to collect and release more bacteria, viruses, and cells/tissues from solutions as compared with unexpanded scaffolds. In addition to that, an expanded sphere shows higher cell collection capacity from the esophagus inner wall as compared with the unexpanded nanofiber membrane. Taken together, the nanofiber capsules developed in this study could provide a minimally invasive method of collecting biological samples from the duodenal, gastric, esophagus, and oropharyngeal sites, potentially leading to timely and accurate diagnosis of many diseases. STATEMENT OF SIGNIFICANCE: Recently, minimally invasive technologies have gained much attention in tissue engineering and disease diagnosis. In this study, we engineered a swallowable and retrievable electrospun nanofiber capsule serving as collection device to collect specimens from internal organs in a minimally invasive manner. The sample collection device could be an alternative endoscopy to collect the samples from internal organs like jejunum, stomach, esophagus, and oropharynx without any sedation. The newly engineered nanofiber capsule could be used to collect, bacteria, virus, fluids, and cells from the abovementioned internal organs. In addition, the biocompatible and biodegradable nanofiber capsule on a string could exhibit a great sample collection capacity for the primary screening of Barret Esophagus, acid reflux, SARS-COVID-19, Helicobacter pylori, and gastric cancer.


Assuntos
Esôfago de Barrett , COVID-19 , Nanofibras , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/microbiologia , Esôfago de Barrett/patologia , Cápsulas , Humanos
17.
Cells ; 11(6)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326403

RESUMO

Background: Cellular transplantation has emerged as promising approach for treating cardiac diseases. However, a poor engraftment rate limits our understanding on how transplanted cardiomyocytes contribute to cardiac function in the recipient's heart. Methods: The CRISPR/Cas9 technique was employed for stable and constitutive gene expression in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). Myocardial infarction was induced in adult immunodeficient mice, followed by intramyocardial injection of hiPSC-CMs expressing either CCND2/channelrhodopsin 2 (hiPSC-CCND2OE/ChR2OECMs) or CCND2/luciferase (hiPSC-CCND2OE/LuciOECMs). Six months later, hemodynamics and intramural electrocardiogram were recorded upon blue light illuminations in anesthetized, open-chest mice. Results: Blue light resets automaticity of spontaneously beating hiPSC-CCND2OE/ChR2OECMs in culture, but not that of hiPSC-CCND2OE/LuciOECMs. Response to blue light was also observed in mice carrying large (>106 cells) intracardiac grafts of hiPSC-CCND2OE/ChR2OECM but not in mice carrying hiPSC-CCND2OE/LuciOECMs. The former exhibited single premature ventricular contractions upon light illumination or ventricular quadrigeminy upon second-long illuminations. At the onset of premature ventricular contractions, maximal systolic ventricular pressure decreased while ventricular volume rose concomitantly. Light-induced changes reversed upon resumption of sinus rhythm. Conclusions: We established an in vivo model for optogenetic-based modulation of the excitability of donor cardiomyocytes in a functional, reversible, and localized manner. This approach holds unique value for studying electromechanical coupling and molecular interactions between donor cardiomyocytes and recipient hearts in live animals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Complexos Ventriculares Prematuros , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Optogenética , Complexos Ventriculares Prematuros/metabolismo
18.
Front Cardiovasc Med ; 8: 763984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722687

RESUMO

We evaluated the metabolic profile in pig hearts at postnatal day 1, 3, 7, and 28 (P1, P3, P7, and P28, respectively) using a targeted liquid chromatography tandem mass spectrometry assay. Our data showed that there is a clear separation of the detected metabolites in P1 vs. P28 hearts. Active anabolisms of nucleotide and proteins were observed in P1 hearts when cardiomyocytes retain high cell cycle activity. However, the active posttranslational protein modification, metabolic switch from glucose to fatty acids, and the reduced ratio of collagen to total protein were observed in P28 hearts when cardiomyocytes withdraw from cell cycle.

19.
Front Cardiovasc Med ; 8: 742315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34651028

RESUMO

Cardiovascular disease (CVD) is the leading cause of mortality, resulting in approximately one-third of deaths worldwide. Among CVD, acute myocardial infarctions (MI) is the leading cause of death. Current treatment modalities for treating CVD have improved over the years, but the demand for new and innovative therapies has been on the rise. The field of nanomedicine and nanotechnology has opened a new paradigm for treating damaged hearts by providing improved drug delivery methods, specifically targeting injured areas of the myocardium. With the advent of innovative biomaterials, newer therapeutics such as growth factors, stem cells, and exosomes have been successfully delivered to the injured myocardial tissue, promoting improvement in cardiac function. This review focuses on three major drug delivery modalities: nanoparticles, microspheres, and hydrogels, and their potential for treating damaged hearts following an MI.

20.
Circulation ; 144(3): 210-228, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33951921

RESUMO

BACKGROUND: Human induced pluripotent stem cells with normal (wild-type) or upregulated (overexpressed) levels of CCND2 (cyclin D2) expression were differentiated into cardiomyocytes (CCND2WTCMs or CCND2OECMs, respectively) and injected into infarcted pig hearts. METHODS: Acute myocardial infarction was induced by a 60-minute occlusion of the left anterior descending coronary artery. Immediately after reperfusion, CCND2WTCMs or CCND2OECMs (3×107 cells each) or an equivalent volume of the delivery vehicle was injected around the infarct border zone area. RESULTS: The number of the engrafted CCND2OECMs exceeded that of the engrafted CCND2WTCMs from 6- to 8-fold, rising from 1 week to 4 weeks after implantation. In contrast to the treatment with the CCND2WTCMs or the delivery vehicle, the administration of CCND2OECM was associated with significantly improved left ventricular function, as revealed by magnetic resonance imaging. This correlated with reduction of infarct size, fibrosis, ventricular hypertrophy, and cardiomyocyte apoptosis, and increase of vascular density and arterial density, as per histologic analysis of the treated hearts. Expression of cell proliferation markers (eg, Ki67, phosphorylated histone 3, and Aurora B kinase) was also significantly upregulated in the recipient cardiomyocytes from the CCND2OECM-treated than from the CCND2WTCM-treated pigs. The cell proliferation rate and the hypoxia tolerance measured in cultured human induced pluripotent stem cell cardiomyocytes were significantly greater after treatment with exosomes isolated from the CCND2OECMs (CCND2OEExos) than from the CCND2WTCMs (CCND2WTExos). As demonstrated by our study, CCND2OEExos can also promote the proliferation activity of postnatal rat and adult mouse cardiomyocytes. A bulk miRNA sequencing analysis of CCND2OEExos versus CCND2WTExos identified 206 and 91 miRNAs that were significantly upregulated and downregulated, respectively. Gene ontology enrichment analysis identified significant differences in the expression profiles of miRNAs from various functional categories and pathways, including miRNAs implicated in cell-cycle checkpoints (G2/M and G1/S transitions), or the mechanism of cytokinesis. CONCLUSIONS: We demonstrated that enhanced potency of CCND2OECMs promoted myocyte proliferation in both grafts and recipient tissue in a large mammal acute myocardial infarction model. These results suggest that CCND2OECMs transplantation may be a potential therapeutic strategy for the repair of infarcted hearts.


Assuntos
Diferenciação Celular/genética , Ciclina D2/genética , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Transplante de Células-Tronco , Animais , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Miócitos Cardíacos/citologia , Neovascularização Fisiológica/genética , Recuperação de Função Fisiológica , Suínos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA