Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 258: 121740, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749185

RESUMO

Although two-stage anaerobic digestion (TSAD) technology has been investigated, the mechanisms regarding the impact of acidogenic off-gas (AOG) on successive methane production have not been well addressed. In this study, a novel TSAD system was designed. Food waste, as the main substrate, was co-digested with chicken manure and corn straw. The acidogenic gas beyond atmospheric pressure was introduced into the bottom of the methanogenesis reactor through a stainless steel diffuser. Results showed the addition of AOG increased the methane yield from 435.2 to 597.1 mL/g VSin in successive methanogenesis stage, improved by 37.2 %, and increased the energy yield from 9.0 to 11.3 kJ/g VSsubstrate. However, the theoretical contribution of hydrogenotrophic methanogenesis using H2 contained in AOG was only 15.2 % of the increased methane yield. After the addition of AOG, the decreased levels of ammonia nitrogen and butyrate indicate that the stability of the AD system was improved. The electron transfer system and co-enzyme F420 activity were enhanced; however, the decrease in acetate kinase activity indicates aceticlastic methanogenesis may have been weakened. The microbial diversity and species richness were improved by the added AOG. Methanosarcina was more competitive than Methanothermobacter, enhancing the syntrophic effect. The relative abundance of protein degradation bacteria norank_f_Anaerolineaceae and lipid degradation bacteria Syntrophomonas was increased. Metabolite analysis confirmed that the addition of AOG promoted amino acid metabolism, the biosynthesis of other secondary metabolism and lipid metabolism. The improved degradation of recalcitrant organic components (lipids and proteins) in food waste was responsible for the increased methane yield. This study provides an in-depth understanding of the impact of AOG utilization on successive methane production and has practical implications for the treatment of food waste.


Assuntos
Biocombustíveis , Reatores Biológicos , Metano , Anaerobiose , Metano/metabolismo , Microbiota , Esterco
2.
Bioresour Technol ; 369: 128475, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509302

RESUMO

High impurity concentration of biogas limits its wide commercial utilization. Therefore, the integration of two-stage anaerobic digestion process with in situ biogas upgrading technologies is reviewed, with emphasis on their principles, main influencing factors, research success, and technical challenges. The crucial factors that influence these technologies are pH, alkalinity, and hydrogenotrophic methanogenesis. Hence, pH fluctuation and low gas-liquid mass transfer of H2 are some major technical challenges limiting the full-scale application of in situ upgrading techniques. Two-stage anaerobic digestion integration with various in situ upgrading techniques to form a hybrid system is proposed to overcome the constraints and systematically guide future research design and advance the development and commercialization of these techniques. This review intends to provide the current state of in situ biogas upgrading technologies and identify knowledge gaps that warrant further investigation to advance their development and practical implementation.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Metano , Tecnologia , Dióxido de Carbono , Hidrogênio
3.
Bioresour Technol ; 346: 126625, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34958901

RESUMO

Co-digestion is known to effectively alleviate trace elements (TEs) deficiency in mono-substrates; however, the bioavailability of TEs is crucial for the stability of anaerobic digestion. Therefore, this study investigated the effects of co-digestion of food waste (FW), corn straw (CS) and chicken manure (CM) in two-stage anaerobic digestion on TEs bioavailability and microbial community composition. Various VSFW:(VSCS:VSCM) ratios of 8:2, 7:3, 4:6, and 2:8 were evaluated in two-stage (group A, B, C, D) anaerobic digestion in which the VSCS:VSCM ratio was fixed at 3:1. Results showed that the highest hydrogen production of 106 mL/g VS and methane production co-efficiency of 125.3% was obtained in group A. Group A has a high close range of easily bioavailable TEs (32-64%) compared to other groups, especially the mono-substrate, where almost all TEs ranged between 10 and 36%. The increased relative abundance of the obligate hydrogenotrophic methanogens reflected a positive two-stage methane co-digestion efficiency.


Assuntos
Microbiota , Eliminação de Resíduos , Oligoelementos , Anaerobiose , Animais , Biocombustíveis , Disponibilidade Biológica , Reatores Biológicos , Galinhas , Digestão , Esterco , Metano , Zea mays
4.
Sci Total Environ ; 764: 144639, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33401045

RESUMO

In-situ biogas upgrading by H2 injection is a promising method for bio-natural gas production, yet the effect of H2 addition on antibiotic resistance genes during the in-situ biogas upgrading process remains unknown. We analyzed mesophilic and thermophilic in-situ biogas upgrading digesters with intermittent or continuous mixing models using metagenomic and metatranscriptomic methods to evaluate the effects of H2 addition on antibiotic resistance profiles. We found that H2 addition had less impact in the mesophilic reactor. In the thermophilic reactor, the influenced antibiotic resistance ontology (AROs) was mostly bound to the integral membrane transporters of the ATP-binding cassette and major facilitator superfamily. The annotated gene numbers of four drug classes, including macrolide, glycopeptide, lincosamide, and fluoroquinolone, increased distinctly after H2 addition. Acetate concentration is a vital indicator for distinguishing the abundance of different antibiotic efflux pumps. Most of the AROs influenced by Ruminiclostridium replaced the original dominant species Clostridium, and the versatile genus Methanosarcina was the sole methanogen correlated with the altered AROs of efflux pumps conferring antibiotic resistance. The introduced H2 was synthesized to CH4via the hydrogenotrophic pathway of Methanosarcina flavescens, and part of the consumed H2 was used for cell growth.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Antibacterianos , Reatores Biológicos , Resistência Microbiana a Medicamentos/genética , Hidrogênio , Temperatura
5.
Bioresour Technol ; 319: 124197, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33038654

RESUMO

The performance of biochar mediated anaerobic co-digestion (co-AD) of corn stover (CS) and chicken manure (CM) using continuous stirred tank reactor (CSTR) was studied. Results showed that urea pretreated CS (UPCS) and biochar addition in anaerobic digestion (AD) system can improve co-AD. The effect of urea pretreatment is similar to that of biochar addition, and their synergistic effect was apparent under medium and high OLR conditions. When the OLR was 4.2 and 6.3 g VS/L/d, the biochar mediated UPCS/CM co-AD operated stably with the VMP of 2.160 and 1.616 L/L/d, and VMP of the biochar mediated UPCS /CM were 32.8%-89.6% and 27.8%-96.4% higher than other reactors, respectively. The results reveal that urea pretreatment and biochar addition promoted AD process through strengthening the buffer capacity system established by ammonia nitrogen and volatile fatty acids and improving the degradation of lignocellulosic biomass.


Assuntos
Esterco , Zea mays , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Carvão Vegetal , Galinhas , Metano , Ureia
6.
World J Microbiol Biotechnol ; 36(6): 79, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444937

RESUMO

Anaerobic digestion is an effective process for the treatment of organic solid waste and wastewater and the production of biogas, which is a clean energy source. The carbon dioxide in the biogas can be converted into methane using hydrogen generated from water electrolysis through an approach referred to as power-to-gas. Recently, hydrogen has been added to digesters as an in-situ or ex-situ biogas upgrade to reduce the levels of carbon dioxide. Biogas production systems consist of microbial complexes with highly organized microorganisms in different niches, which can either produce or consume hydrogen. However, the produced endogenous hydrogen should be constantly consumed to maintain a low hydrogen partial pressure. This review addresses the biochemical processes of anaerobic digestion and hydrogen-related microorganisms, including fermentative acid-producing bacteria, syntrophic organic acid degrading bacteria, syntrophic acetate-oxidizing bacteria, homoacetogens, hydrogenotrophic methanogens, and newly reported hydrogen-dependent methylotrophic methanogens. This study also investigates (1) the role of endogenous hydrogen as an intermediate metabolite and of interspecies electron transfer in anaerobic digestion, (2) effects of exogenous hydrogen addition on microbial community structure and metabolic processes, and (3) recent developments regarding in-situ and ex-situ biogas upgrading systems via hydrogen addition.


Assuntos
Anaerobiose , Bactérias/metabolismo , Biocombustíveis , Reatores Biológicos/microbiologia , Hidrogênio/metabolismo , Biocombustíveis/análise , Biocombustíveis/microbiologia , Dióxido de Carbono/metabolismo , Metano/metabolismo , Microbiota
7.
J Ind Microbiol Biotechnol ; 46(11): 1569-1581, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31302801

RESUMO

To investigate the differences in microbial community structure between mesophilic and thermophilic in situ biogas-upgrading systems by H2 addition, two reactors (35 °C and 55 °C) were run for four stages according to different H2 addition rates (H2/CO2 of 0:1, 1:1, and 4:1) and mixing mode (intermittent and continuous). 16S rRNA gene-sequencing technology was applied to analyze microbial community structure. The results showed that the temperature is a crucial factor in impacting succession of microbial community structure and the H2 utilization pathway. For mesophilic digestion, most of added H2 was consumed indirectly by the combination of homoacetogens and strict aceticlastic methanogens. In the thermophilic system, most of added H2 may be used for microbial cell growth, and part of H2 was utilized directly by strict hydrogenotrophic methanogens and facultative aceticlastic methanogens. Continuous stirring was harmful to the stabilization of mesophilic system, but not to the thermophilic one.


Assuntos
Biocombustíveis , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA