Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7396, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149692

RESUMO

Microbes are intimately tied to the occurrence of various diseases that cause serious hazards to human health, and play an essential role in drug discovery, clinical application, and drug quality control. In this manuscript, we put forward a novel prediction model named MDASAE based on a stacked autoencoder (SAE) with multi-head attention mechanism to infer potential microbe-drug associations. In MDASAE, we first constructed three kinds of microbe-related and drug-related similarity matrices based on known microbe-disease-drug associations respectively. And then, we fed two kinds of microbe-related and drug-related similarity matrices respectively into the SAE to learn node attribute features, and introduced a multi-head attention mechanism into the output layer of the SAE to enhance feature extraction. Thereafter, we further adopted the remaining microbe and drug similarity matrices to derive inter-node features by using the Restart Random Walk algorithm. After that, the node attribute features and inter-node features of microbes and drugs would be fused together to predict scores of possible associations between microbes and drugs. Finally, intensive comparison experiments and case studies based on different well-known public databases under 5-fold cross-validation and 10-fold cross-validation respectively, proved that MDASAE can effectively predict the potential microbe-drug associations.


Assuntos
Algoritmos , Biologia Computacional , Humanos
2.
Front Microbiol ; 14: 1159076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032881

RESUMO

Researches have demonstrated that microorganisms are indispensable for the nutrition transportation, growth and development of human bodies, and disorder and imbalance of microbiota may lead to the occurrence of diseases. Therefore, it is crucial to study relationships between microbes and diseases. In this manuscript, we proposed a novel prediction model named MADGAN to infer potential microbe-disease associations by combining biological information of microbes and diseases with the generative adversarial networks. To our knowledge, it is the first attempt to use the generative adversarial network to complete this important task. In MADGAN, we firstly constructed different features for microbes and diseases based on multiple similarity metrics. And then, we further adopted graph convolution neural network (GCN) to derive different features for microbes and diseases automatically. Finally, we trained MADGAN to identify latent microbe-disease associations by games between the generation network and the decision network. Especially, in order to prevent over-smoothing during the model training process, we introduced the cross-level weight distribution structure to enhance the depth of the network based on the idea of residual network. Moreover, in order to validate the performance of MADGAN, we conducted comprehensive experiments and case studies based on databases of HMDAD and Disbiome respectively, and experimental results demonstrated that MADGAN not only achieved satisfactory prediction performances, but also outperformed existing state-of-the-art prediction models.

3.
PLoS One ; 18(4): e0283440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011068

RESUMO

With the development of computer technology, speech synthesis techniques are becoming increasingly sophisticated. Speech cloning can be performed as a subtask of speech synthesis technology by using deep learning techniques to extract acoustic information from human voices and combine it with text to output a natural human voice. However, traditional speech cloning technology still has certain limitations; excessively large text inputs cannot be adequately processed, and the synthesized audio may include noise artifacts like breaks and unclear phrases. In this study, we add a text determination module to a synthesizer module to process words the model has not included. The original model uses fuzzy pronunciation for such words, which is not only meaningless but also affects the entire sentence. Thus, we improve the model by splitting the letters and pronouncing them separately. Finally, we also improved the preprocessing and waveform conversion modules of the synthesizer. We replace the pre-net module of the synthesizer and use an upgraded noise reduction algorithm combined with the SV2TTS framework to achieve a system with superior speech synthesis performance. Here, we focus on improving the performance of the synthesizer module to achieve higher-quality speech synthesis audio output.


Assuntos
Percepção da Fala , Voz , Humanos , Fala , Melhoria de Qualidade , Qualidade da Voz , Algoritmos , Clonagem Molecular
4.
Front Genet ; 12: 763153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745230

RESUMO

Considering that traditional biological experiments are expensive and time consuming, it is important to develop effective computational models to infer potential essential proteins. In this manuscript, a novel collaborative filtering model-based method called CFMM was proposed, in which, an updated protein-domain interaction (PDI) network was constructed first by applying collaborative filtering algorithm on the original PDI network, and then, through integrating topological features of PDI networks with biological features of proteins, a calculative method was designed to infer potential essential proteins based on an improved PageRank algorithm. The novelties of CFMM lie in construction of an updated PDI network, application of the commodity-customer-based collaborative filtering algorithm, and introduction of the calculation method based on an improved PageRank algorithm, which ensured that CFMM can be applied to predict essential proteins without relying entirely on known protein-domain associations. Simulation results showed that CFMM can achieve reliable prediction accuracies of 92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25% predicted candidate key proteins based on the DIP database, which are remarkably higher than 14 competitive state-of-the-art predictive models as a whole, and in addition, CFMM can achieve satisfactory predictive performances based on different databases with various evaluation measurements, which further indicated that CFMM may be a useful tool for the identification of essential proteins in the future.

5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(11): 1457-1462, 2021 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-34779173

RESUMO

OBJECTIVE: To investigate the safety and accuracy of robot-assisted pedicle screw implantation in the adolescent idiopathic scoliosis (AIS) surgery. METHODS: The clinical data of 46 patients with AIS who were treated with orthopedics, bone graft fusion, and internal fixation via posterior approach between June 2018 and December 2019 were analyzed retrospectively. Among them, 22 cases were treated with robot-assisted pedicle screw implantation (robot group) and 24 cases with manual pedicle screw implantation without robot assistance (control group). There was no significant difference in gender, age, body mass index, Lenke classification, and preoperative Cobb angle of the main curve, pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score between the two groups ( P>0.05). The intraoperative blood loss, pedicle screw implantation time, intraoperative pedicle screw adjustment times, and VAS and JOA scores after operation were recorded. The Cobb angle of the main curve was measured on X-ray film and the spinal correction rate was calculated. The screw position and the accuracy of screw implantation were evaluated on CT images. RESULTS: The operation completed successfully in the two groups. The intraoperative blood loss, pedicle screw implantation time, and pedicle screw adjustment times in the robot group were significantly less than those in the control group ( P<0.05). There was 1 case of poor wound healing in the robot group and 2 cases of mild nerve root injury and 2 cases of poor incision healing in the control group, and there was no significant difference in the incidence of complications between the two groups ( P=0.667). All patients in the two groups were followed up 3-9 months (mean, 6.4 months). The VAS and JOA scores at last follow-up in the two groups were superior to those before operation ( P<0.05), but there was no significant difference in the difference of pre- and post-operative scores between the two groups ( P>0.05). The imaging review showed that 343 screws were implanted in the robot group and 374 screws in the control group. There were significant differences in pedicle screw implantation classification and accuracy between the two groups (89.5% vs 79.1%)( Z=-3.964, P=0.000; χ 2=14.361, P=0.000). At last follow-up, the Cobb angles of the main curve in the two groups were significantly lower than those before operation ( P<0.05), and there was significant difference in the difference of pre- and post-operative Cobb angles between the two groups ( t=0.999, P=0.323). The spinal correction rateswere 79.82%±5.33% in the robot group and 79.62%±5.58% in the control group, showing no significant difference ( t=0.120, P=0.905). CONCLUSION: Compared with manual pedicle screw implantation, robot-assisted pedicle screw implantation in AIS surgery is safer, less invasive, and more accurate.


Assuntos
Parafusos Pediculares , Robótica , Escoliose , Fusão Vertebral , Adolescente , Humanos , Vértebras Lombares , Estudos Retrospectivos , Escoliose/cirurgia , Vértebras Torácicas , Resultado do Tratamento
6.
Front Aging Neurosci ; 13: 799500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140599

RESUMO

Growing evidence have demonstrated that many biological processes are inseparable from the participation of key proteins. In this paper, a novel iterative method called linear neighborhood similarity-based protein multifeatures fusion (LNSPF) is proposed to identify potential key proteins based on multifeature fusion. In LNSPF, an original protein-protein interaction (PPI) network will be constructed first based on known protein-protein interaction data downloaded from benchmark databases, based on which, topological features will be further extracted. Next, gene expression data of proteins will be adopted to transfer the original PPI network to a weighted PPI network based on the linear neighborhood similarity. After that, subcellular localization and homologous information of proteins will be integrated to extract functional features for proteins, and based on both functional and topological features obtained above. And then, an iterative method will be designed and carried out to predict potential key proteins. At last, for evaluating the predictive performance of LNSPF, extensive experiments have been done, and compare results between LNPSF and 15 state-of-the-art competitive methods have demonstrated that LNSPF can achieve satisfactory recognition accuracy, which is markedly better than that achieved by each competing method.

7.
Front Genet ; 11: 384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425979

RESUMO

Recent studies have indicated that microRNAs (miRNAs) are closely related to sundry human sophisticated diseases. According to the surmise that functionally similar miRNAs are more likely associated with phenotypically similar diseases, researchers have proposed a variety of valid computational models through integrating known miRNA-disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity to discover the potential miRNA-disease relationships in biomedical researches. Taking account of the limitations of previous computational models, a new computational model based on biased heat conduction for MiRNA-Disease Association prediction (BHCMDA) was proposed in this paper, which can achieve the AUC of 0.8890 in LOOCV (Leave-One-Out Cross Validation) and the mean AUC of 0.9060, 0.8931 under the framework of twofold cross validation, fivefold cross validation, respectively. In addition, BHCMDA was further implemented to the case studies of three vital human cancers, and simulation results illustrated that there were 88% (Esophageal Neoplasms), 92% (Colonic Neoplasms) and 92% (Lymphoma) out of top 50 predicted miRNAs having been confirmed by experimental literatures, separately, which demonstrated the good performance of BHCMDA as well. Thence, BHCMDA would be a useful calculative resource for potential miRNA-disease association prediction.

8.
Comput Math Methods Med ; 2019: 7614850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191710

RESUMO

A lot of research studies have shown that many complex human diseases are associated not only with microRNAs (miRNAs) but also with long noncoding RNAs (lncRNAs). However, most of the current existing studies focus on the prediction of disease-related miRNAs or lncRNAs, and to our knowledge, until now, there are few literature studies reported to pay attention to the study of impact of miRNA-lncRNA pairs on diseases, although more and more studies have shown that both lncRNAs and miRNAs play important roles in cell proliferation and differentiation during the recent years. The identification of disease-related genes provides great insight into the underlying pathogenesis of diseases at a system level. In this study, a novel model called PADLMHOOI was proposed to predict potential associations between diseases and lncRNA-miRNA pairs based on the higher-order orthogonal iteration, and in order to evaluate its prediction performance, the global and local LOOCV were implemented, respectively, and simulation results demonstrated that PADLMHOOI could achieve reliable AUCs of 0.9545 and 0.8874 in global and local LOOCV separately. Moreover, case studies further demonstrated the effectiveness of PADLMHOOI to infer unknown disease-related lncRNA-miRNA pairs.


Assuntos
Neoplasias da Mama/genética , Neoplasias do Colo/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Algoritmos , Área Sob a Curva , Simulação por Computador , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Modelos Genéticos , Família Multigênica , Distribuição Normal , Curva ROC , Projetos de Pesquisa , Fatores de Risco , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA