Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Anal Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953491

RESUMO

The Tn antigen, an immature truncated O-glycosylation, is a promising biomarker for cancer detection and diagnosis. However, reliable methods for analyzing O-GalNAcylation and complex O-glycosylation are lacking. Here, we develop a novel method, MOTAI, for the sequential analysis of O-glycosylation using different O-glycoproteases. MOTAI conjugates glycopeptides on a solid support and releases different types of O-glycosylation through sequential enzymatic digestion by O-glycoproteases, including OpeRATOR and IMPa. Because OpeRATOR has less activity on O-GalNAcylation, MOTAI enriches O-GalNAcylation for subsequent analysis. We demonstrate the effectiveness of MOTAI by analyzing fetuin O-glycosylation and Jurkat cell lines. We then apply MOTAI to analyze colorectal cancer and benign colorectal polyps. We identify 32 Tn/sTn-glycoproteins and 43 T/sT-glycoproteins that are significantly increased in tumor tissues. Gene Ontology analysis reveals that most of these proteins are ECM proteins involved in the adhesion process of the intercellular matrix. Additionally, the protein disulfide isomerase CRELD2 has a significant difference in Tn expression, and the abnormally glycosylated T345 and S349 O-glycosylation sites in cancer group samples may promote the secretion of CRELD2 and ultimately tumorigenesis through ECM reshaping. In summary, MOTAI provides a powerful new tool for the in-depth analysis of O-GalNAcylation and complex O-glycosylation. It also reveals the upregulation of Tn/sTn-glycoproteins in colorectal cancer, which may provide new insights into cancer biology and biomarker discovery.

2.
Protein J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981944

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent cancer types in the world and accounts for the majority of cases of primary liver cancer. A crucial part of the carcinogenesis of HCC involves aberrant stimulation of the FGF19-FGFR4 signaling pathway. Therefore, FGFR4 inhibition has become a strategic therapeutic approach for the treatment of HCC. However, the clinical treatment procedure is significantly hampered by the prevalence of kinase inhibitors resistance. It was recently established that the activation of EGFR signaling was found to be one of the primary mechanisms mediating the acquired resistance to FGFR4 inhibitors, moreover, sensitivity to FGFR4 inhibitors was effectively restored by inhibiting EGFR. These results provide compelling evidence that dual inhibition of EGFR and FGFR4 could represent a viable therapeutic approach to overcome resistance, hence enhanced management of HCC. To this end, we proposed a dual irreversible inhibition strategy through covalent binding by naturally occurring electrophilic warhead-bearing compounds (curcumin, deoxyelephantopin, eupalmerin acetate, syringolin A and andrographolide) to covalently target both EGFR and FGFR4 through cysteine residues, Cys797 and Cys552, respectively. Covalent docking and covalent molecular dynamics (MM/MDcov) simulations combined with thermodynamic binding free energy calculations were performed, and the results were compared against known potent and selective covalent EGFR and FGFR4 inhibitors with available X-ray crystal structures, Afatinib and BLU9931, respectively. Curcumin, deoxyelephantopin, eupalmerin acetate, syringolin A, and andrographolide showed relative binding free energies of -22.85, -17.14, -12.98, -21.81, and - 19.00 kcal/mol against EGFR and - 41.06, -29.45, -24.76, -40.11, and - 37.55 kcal/mol against FGFR4, respectively. The mechanisms of binding were emphasized by hydrogen bonding and binding forces analysis as well as active site physicochemical profiling. The findings of this study identified that curcumin, syringolin A and andrographolide-but not eupalmerin acetate or deoxyelephantopin -could be viable dual EGFR and FGFR4 covalent irreversible inhibitors and could be implemented in HCC combination therapy protocols alone or in conjunction with other chemotherapeutic agents. Investigations of this study conclusively indicate dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for enhanced management of HCC.

3.
BMC Pregnancy Childbirth ; 24(1): 433, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886689

RESUMO

OBJECTIVIES: Pregnancy induced hypertension (PIH) syndrome is a disease that unique to pregnant women and is associated with elevated risk of offspring cardiovascular diseases (CVDs) and neurodevelopmental disorders in their kids. Previous research on cord blood utilizing the Human Methylation BeadChip or EPIC array revealed that PIH is associated with specific DNA methylation site. Here, we investigate the whole genome DNA methylation landscape of cord blood from newborns of PIH mother. METHODS: Whole-genome bisulfite sequencing (WGBS) was used to examine the changes in whole genome DNA methylation in the umbilical cord blood of three healthy (NC) and four PIH individuals. Using methylKit, we discovered Hypo- and hyper- differentially methylated probes (DMPs) or methylated regions (DMRs) in the PIH patients' cord blood DNA. Pathway enrichments were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays. DMPs or DMRs relevant to the immunological, neurological, and circulatory systems were also employed for enrichment assay, Metascape analysis and PPI network analysis. RESULTS: 520 hyper- and 224 hypo-DMPs, and 374 hyper- and 186 hypo-DMRs between NC and PIH group, respectively. Both DMPs and DMRs have enhanced pathways for cardiovascular, neurological system, and immune system development. Further investigation of DMPs or DMRs related to immunological, neurological, and circulatory system development revealed that TBK1 served as a hub gene for all three developmental pathways. CONCLUSION: PIH-associated DMPs or DMRs in umbilical cord blood DNA may play a role in immunological, neurological, and circulatory system development. Abnormal DNA methylation in the immune system may also contribute to the development of CVDs and neurodevelopment disorders.


Assuntos
Metilação de DNA , Sangue Fetal , Hipertensão Induzida pela Gravidez , Humanos , Feminino , Gravidez , Sangue Fetal/química , Recém-Nascido , Hipertensão Induzida pela Gravidez/genética , Hipertensão Induzida pela Gravidez/sangue , Adulto , Epigenoma , Epigênese Genética , Estudos de Casos e Controles , Sequenciamento Completo do Genoma/métodos
4.
Int Orthop ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847859

RESUMO

PURPOSE: To develop a novel classification of sagittal en bloc resection (SEBR) based on anatomical locations for thoracolumbar spine tumors and assess the clinical outcomes of this surgical procedure. METHODS: 31 patients with thoracolumbar tumours treated with SEBR were enrolled in this study. The individualized surgical strategy was adopted based on our surgical classification. Demographics, perioperative outcomes, complications and postoperative outcomes were assessed. RESULTS: Based on our surgical classifications, patients were divided into four types. All bony resection margins were negative, wide resection was achieved in 25 patients, marginal resection in four, and intralesional resection in two. 18 patients underwent anterior reconstruction. Complications were encountered in five patients, and instrumentation failure occurred in one patient. The median follow-up was 24 (range, 6-72) months and recurrence was found in only one patient. CONCLUSION: SEBR is a safe and effective surgical procedure for patients with thoracolumbar spinal tumours in specific anatomical locations. The proposed surgical classification covers all SEBR types and is easy to apply, it may assist surgical decision-making in patients with spinal tumours.

5.
J Oral Microbiol ; 16(1): 2365965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910869

RESUMO

Background: Healthcare settings may amplify transmission of respiratory pathogens, however empirical evidence is lacking. We aimed to describe the spectrum and distribution of respiratory pathogens among healthcare workers in eastern China. Methods: Healthcare workers were recruited from October 2020 to November 2021 in Jiangsu province. Participants were interviewed regarding demographic and hospital-based protective measures. Thirty-seven common respiratory pathogens were tested using real-time PCR/RT-PCR (Probe qPCR). The role of demographic and hospital-based protective measures on pathogens colonization using multivariable logistic regression models. Results: Among 316 enrolled healthcare workers, a total of 21 pathogens were detected. In total, 212 (67.1%) healthcare workers had at least one respiratory pathogen; 195 (61.7%) and 70 (22.2%) with a bacterial and viral pathogen. The most commonly detected pathogen was streptococcus pneumoniae (47.5%) followed by Haemophilus influenzae (21.2%). One hundred and five (33.2%) healthcare workers with copathogens had at least two respiratory pathogens. Both bacterial and viral colonization were more common in 2020 compared to 2021. A decreased risk of colonization was seen in participants with infection prevention and control training and suitable hand hygiene. Conclusions: Colonization of respiratory pathogens in healthcare workers from eastern China was high. Differential risk was impacted only by hospital-based protective measures and not demographic factors.

6.
Environ Sci Pollut Res Int ; 31(25): 37283-37297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772992

RESUMO

The dynamic subsidence disaster caused by underground mining of coal resources is a complex spatiotemporal process, which is a common disaster in mining areas. The backfilling strip mining technology is a green and sustainable coal mining method, which has been commonly used to reduce the subsidence disaster of the overlying strata and protect surface buildings. The transient deformation is the main reason of surface buildings damage; therefore, in this study, the similar material model was used to research dynamic deformation characteristics of the overlying strata in backfilling strip mining at different time scales, and the optical image method was employed to monitor and obtain the movement data of the overlying strata automatically. The data analysis shows that there is a time-scale effect in mining subsidence. The deformation of the overlying strata increases instantaneously at a certain time under the monitoring of small time scale, and this phenomenon gradually disappears as time scales increase. According to the subsidence velocity of small time scale, the subsidence state of the overlying strata can be further divided into the abrupt subsidence state and the gentle subsidence state. This is really significant for promoting the development of the backfilling strip mining technology and preventing the damage of surface buildings.


Assuntos
Minas de Carvão , Mineração , Carvão Mineral
7.
Bone Jt Open ; 5(4): 317-323, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38631693

RESUMO

Aims: The aim of this study was to investigate the safety and efficacy of 3D-printed modular prostheses in patients who underwent joint-sparing limb salvage surgery (JSLSS) for malignant femoral diaphyseal bone tumours. Methods: We retrospectively reviewed 17 patients (13 males and four females) with femoral diaphyseal tumours who underwent JSLSS in our hospital. Results: In all, 17 patients with locally aggressive bone tumours (Enneking stage IIB) located in the femoral shaft underwent JSLSS and reconstruction with 3D-printed modular prostheses between January 2020 and June 2022. The median surgical time was 153 minutes (interquartile range (IQR) 117 to 248), and the median estimated blood loss was 200ml (IQR 125 to 400). Osteosarcoma was the most common pathological type (n = 12; 70.6%). The mean osteotomy length was 197.53 mm (SD 12.34), and the median follow-up was 25 months (IQR 19 to 38). Two patients experienced local recurrence and three developed distant metastases. Postoperative complications included wound infection in one patient and screw loosening in another, both of which were treated successfully with revision surgery. The median Musculoskeletal Tumor Society score at the final follow-up was 28 (IQR 27 to 28). Conclusion: The 3D-printed modular prosthesis is a reliable and feasible reconstruction option for patients with malignant femoral diaphyseal tumours. It helps to improve the limb salvage rate, restore limb function, and achieve better short-term effectiveness.

8.
Food Microbiol ; 121: 104510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637074

RESUMO

Mycotoxins, as secondary metabolites produced by fungi, have been the focus of researchers in various countries and are considered to be one of the major risk factors in agricultural products. There is an urgent need for a rapid, simple and high-performance method to detect residues of harmful mycotoxins in agricultural foods. We have developed a gold nanoparticle-based multiplexed immunochromatographic strip biosensor that can simultaneously detect fifteen mycotoxins in cereal samples. With this optimized procedure, five representative mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), tenuazonic acid (TEA) and alternariol (AOH) were detected in the range of 0.91-4.77, 0.04-0.56, 0.11-0.68, 0.12-1.02 and 0.09-0.75 ng/mL, respectively. The accuracy and stability of these measurements were demonstrated by analysis of spiked samples with recoveries of 91.8%-115.3% and coefficients of variation <8.7%. In addition, commercially available samples of real cereals were tested using the strips and showed good agreement with the results verified by LC-MS/MS. Therefore, Our assembled ICA strips can be used for the simultaneous detection of 5 mycotoxins and their analogs (15 mycotoxins in total) in grain samples, and the results were consistent between different types of cereal foods, this multiplexed immunochromatographic strip biosensor can be used as an effective tool for the primary screening of mycotoxin residues in agricultural products.


Assuntos
Nanopartículas Metálicas , Micotoxinas , Micotoxinas/análise , Ouro/análise , Ouro/química , Cromatografia Líquida , Contaminação de Alimentos/análise , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Espectrometria de Massas em Tandem , Grão Comestível/microbiologia
9.
Environ Pollut ; 349: 123947, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608856

RESUMO

There is sufficient evidence suggesting that exposure to hexavalent chromium [Cr(VI)] can cause a decline in lung function and the onset of lung diseases. However, no studies have yet explored the underlying mechanisms of these effects from various perspectives such as systemic inflammation, oxidative stress, and cellular senescence, simultaneously. This cross-sectional study was conducted among 304 workers engaged in chromate production and processing in China. Urine was used for detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α), while RNA and DNA extraction from peripheral blood cells was used for detection of mRNA, telomere length, and ribosomal DNA copy numbers (rDNA CNs). A 2.7-fold elevation in blood chromate (Cr) corresponded to a 7.86% (95% CI: 2.57%, 13.42%) rise in urinary 8-OHdG and a 4.14% (0.02%, 8.42%) increase in urinary 8-iso-PGF2α, indicating that exposure to chromates can cause oxidative stress. Furthermore, strong correlations emerged between blood Cr concentration and mRNA levels of P16, P21, TP53, and P15 in the cellular senescence pathway. Simultaneously, a 2.7-fold elevation in blood Cr associated with a -5.47% (-8.72%, -2.1%) change in telomere length, while rDNA CNs (5S, 5.8S, 18S, and 28S) changed by -3.91% (-7.99%, 0.34%), -9.4% (-15.73%, -2.6%), -8.06% (-14.01%, -1.69%), and -5.86% (-10.67%, -0.78%), respectively. Structural equation model highlighted that cellular senescence exerted significant indirect effects on Cr(VI)-associated lung function decline, with a mediation proportion of 23.3%. This study provided data supporting for 8-iso-PGF2α, telomere length, and rDNA CNs as novel biomarkers of chromate exposure, emphasizing the significant role of cellular senescence in the mechanism underlying chromate-induced lung function decline.


Assuntos
Senescência Celular , Cromo , Dinoprosta/análogos & derivados , Exposição Ocupacional , Estresse Oxidativo , Senescência Celular/efeitos dos fármacos , Cromo/toxicidade , Humanos , Estudos Transversais , Adulto , China , Masculino , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Pessoa de Meia-Idade , Pulmão/efeitos dos fármacos , Feminino , 8-Hidroxi-2'-Desoxiguanosina , Cromatos/toxicidade
10.
Microlife ; 5: uqae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623411

RESUMO

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.

11.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629869

RESUMO

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Assuntos
Cromatos , Aprendizado de Máquina , Humanos , Estudos Transversais , Poluentes Ambientais , Masculino , Dano ao DNA , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663490

RESUMO

Preeclampsia (PE) is a complex disorder affecting pregnant women, leading to significant maternal and fetal morbidity and mortality. Understanding the cellular dynamics and molecular mechanisms underlying PE is crucial for developing effective therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) to delineate the cellular landscape of the placenta in PE, identifying 11 distinct cell subpopulations, with macrophages playing a pivotal role in mediating cell-cell communication. Specifically, the transcription factor JUNB was found to be a key gene in macrophages from PE samples, influencing the interaction between macrophages and both epithelial and endothelial cells. Functional experiments indicated that interference with JUNB expression promoted macrophage polarization towards an M2 phenotype, which facilitated trophoblast invasion, migration, and angiogenesis. Mechanistically, JUNB regulated the MIIP/PI3K/AKT pathway, as evidenced by gene expression analysis following JUNB knockdown. The study further demonstrated that targeting JUNB could activate the PI3K/AKT pathway by transcriptionally activating MIIP, thus promoting M2 polarization and potentially delaying the onset of PE. These findings present new insights into the pathogenesis of PE and suggest a novel therapeutic approach by modulating macrophage polarization.


Assuntos
Macrófagos , Fosfatidilinositol 3-Quinases , Pré-Eclâmpsia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/genética , Gravidez , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Placenta/metabolismo , Placenta/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ativação de Macrófagos/genética , Movimento Celular/genética
13.
J Environ Sci (China) ; 143: 224-234, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644019

RESUMO

Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.


Assuntos
Cromatos , Cromo , Inflamação , Humanos , Cromo/toxicidade , Cromo/sangue , Inflamação/sangue , Masculino , Cromatos/toxicidade , Cromatos/sangue , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Exposição Ocupacional/efeitos adversos , Alanina Transaminase/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Aspartato Aminotransferases/sangue , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidade
14.
Phys Chem Chem Phys ; 26(13): 10289-10300, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497927

RESUMO

Constructing Z-scheme heterojunction photocatalysts with high solar-to-hydrogen (STH) efficiency is a practical alternative to produce clean and recyclable hydrogen energy on a large scale. This paper presents the design of stable Z-scheme blue phosphorene (BlueP)/γ-SnS heterostructures with excellent photocatalytic activities by applying strains. The first-principles calculations show that the BlueP/γ-SnS heterobilayer is a type-I heterojunction with an indirect bandgap of 1.41 eV and strong visible-light absorption up to 105 cm-1. Interestingly, biaxial strains (ε) can effectively regulate its bandgap width (semiconductor-metal) and induce the band alignment transition (type-I-type-II). Compressive and tensile strains can significantly enhance the interfacial interaction and visible-light absorption, respectively. More intriguingly, compressive strains can not only modulate the heterojunction types but also make the band edges meet the requirements for overall water splitting. In particular, the Z-scheme (type-I) BlueP/γ-SnS bilayer at -8% (-2%) strain exhibits a relatively high STH efficiency of 18% (17%), and the strained Z-scheme system (-8% ≤ ε ≤ -6%) also exhibits high and anisotropic carrier mobilities (158-2327 cm2 V-1 s-1). These strain-induced outstanding properties make BlueP/γ-SnS heterostructures promising candidates for constructing economically feasible photocatalysts and flexible nanodevices.

15.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457455

RESUMO

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Assuntos
Proteínas de Bactérias , Ácido Succínico , Animais , Proteínas de Bactérias/metabolismo , Ácido Succínico/metabolismo , Salmonella typhimurium/genética , Succinatos/metabolismo , Carbono/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
16.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489607

RESUMO

Endolysins are produced by (bacterio)phages and play a crucial role in degrading the bacterial cell wall and the subsequent release of new phage progeny. These lytic enzymes exhibit a remarkable diversity, often occurring in a multimodular form that combines different catalytic and cell wall-binding domains, even in phages infecting the same species. Yet, our current understanding lacks insight into how environmental factors and ecological niches may have influenced the evolution of these enzymes. In this study, we focused on phages infecting Streptococcus thermophilus, as this bacterial species has a well-defined and narrow ecological niche, namely, dairy fermentation. Among the endolysins found in phages targeting this species, we observed limited diversity, with a singular structural type dominating in most of identified S. thermophilus phages. Within this prevailing endolysin type, we discovered a novel and highly conserved calcium-binding motif. This motif proved to be crucial for the stability and activity of the enzyme at elevated temperatures. Ultimately, we demonstrated its positive selection within the host's environmental conditions, particularly under the temperature profiles encountered in the production of yogurt, mozzarella, and hard cheeses that rely on S. thermophilus.


Assuntos
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Fermentação , Endopeptidases
17.
J Control Release ; 368: 466-480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452820

RESUMO

Physiological or pathological hypoperfusion of the placenta is one of the main causes of intrauterine growth restriction (IUGR) which poses a significant risk to the health of the fetus and newborn. Tadalafil, a 5-type phosphodiesterase inhibitor, has previously been found to improve the symptoms of IUGR in various clinical studies. Unfortunately, its clinical utility is hindered by its limited water solubility, rapid metabolism, and lack of specific distribution in target tissues rendering tadalafil unable to maintain long-term placental perfusion. In this study, iRGD-modified tadalafil-loaded liposomes (iRGD-lipo@Tad) featuring a size of approximately 480 nm were designed to rectify the shortcomings of tadalafil. The prepared iRGD-lipo@Tad exhibited superior stability, sustained drug release capacity, and low cytotoxicity. The fluorescence study, tissue slice study, and drug biodistribution study together demonstrated the placenta-anchored ability of iRGD-modified liposomes. This was achieved by a dual approach consisting of the iRGD-mediated placenta-targeting effect and special particle size-mediated placenta resident effect. The pharmacokinetic study revealed a significant improvement in the in vivo process of tadalafil encapsulated by the iRGD-modified liposomes. In comparison to the tadalafil solution, the peak plasma concentration of iRGD-lipo@Tad was significantly increased, and the area under the curve was increased by about 7.88 times. In the pharmacodynamic study, iRGD-lipo@Tad achieved a continuous and efficient improvement of placental blood perfusion. This was achieved by decreasing the ratio of plasma soluble fms-like tyrosine kinase to placental growth factor and increasing the levels of cyclic guanosine monophosphate and nitric oxide. Consequently, iRGD-lipo@Tad resulted in a significant increase in embryo weight and a reduction in the miscarriage rate of N-Nitro-L-arginine methyl ester-induced IUGR pregnant mice without detectable toxicity. In summary, the nanotechnology-assisted therapy strategy presented here not only overcomes the limitations of tadalafil in the clinical treatment of IUGR but also offers new avenues to address the treatment of other placenta-originated diseases.


Assuntos
Lipossomos , Placenta , Humanos , Feminino , Gravidez , Animais , Camundongos , Lipossomos/metabolismo , Tadalafila/uso terapêutico , Tadalafila/metabolismo , Placenta/metabolismo , Placenta/patologia , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Distribuição Tecidual , Fator de Crescimento Placentário/metabolismo , Perfusão
18.
Cell Rep ; 43(2): 113751, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38341855

RESUMO

The premetastatic niche (PMN) contributes to lung-specific metastatic tropism in osteosarcoma. However, the crosstalk between primary tumor cells and lung stromal cells is not clearly defined. Here, we dissect the composition of immune cells in the lung PMN and identify granulocytic myeloid-derived suppressor cell (gMDSC) infiltration as positively associated with immunosuppressive PMN formation and tumor cell colonization. Osteosarcoma-cell-derived extracellular vesicles (EVs) activate lung interstitial macrophages to initiate the influx of gMDSCs via secretion of the chemokine CXCL2. Proteomic profiling of EVs reveals that EV-packaged S100A11 stimulates the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in macrophages by interacting with USP9X. High level of S100A11 expression or circulating gMDSCs correlates with the presentation of lung metastasis and poor prognosis in osteosarcoma patients. In summary, we identify a key role of tumor-derived EVs in lung PMN formation, providing potential strategies for monitoring or preventing lung metastasis in osteosarcoma.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Neoplasias Pulmonares , Osteossarcoma , Humanos , Proteômica , Proteínas S100 , Ubiquitina Tiolesterase
19.
Phytomedicine ; 126: 155395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340578

RESUMO

BACKGROUND: The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE: To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS: Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS: In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger ß-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating ß-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION: These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.


Assuntos
Bufanolídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , beta Catenina/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Carcinogênese , Microambiente Tumoral
20.
World J Gastrointest Surg ; 16(1): 49-58, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328323

RESUMO

BACKGROUND: Women have a 3% lifetime chance of developing an inguinal hernia, which is not as common in men. Due to its cosmetic benefits, single-incision laparoscopic transabdominal preperitoneal (SIL-TAPP) inguinal hernia repair is becoming increasingly popular in the management of inguinal hernia in women. However, there are no studies comparing the safety and applicability of SIL-TAPP repair with conventional laparoscopic transabdominal preperitoneal (CL-TAPP) inguinal hernia repair for the treatment of inguinal hernia in women. AIM: To compare the outcomes of SIL-TAPP and CL-TAPP repair in adult female patients with inguinal hernia and to estimate the safety and applicability of SIL-TAPP repair in adult female inguinal hernia patients. METHODS: We retrospectively compared the clinical information and follow-up data of female inguinal hernia patients who underwent SIL-TAPP inguinal hernia repair and those who underwent CL-TAPP inguinal hernia repair at the Affiliated Hospital of Nantong University from February 2018 to December 2020 and assessed the long-term and short-term outcomes of both cohorts. RESULTS: This study included 123 patients, with 71 undergoing SIL-TAPP repair and 52 undergoing CL-TAPP repair. The two cohorts of patients and inguinal hernia characteristics were similar, with no statistically meaningful difference. The rate of intraoperative inferior epigastric vessel injury was lower in patients in the SIL-TAPP cohort (0, 0%) than in patients in the CL-TAPP cohort (4, 7.7%) and was significantly different (P < 0.05). In addition, the median [interquartile range (IQR)] total hospitalization costs were significantly lower in patients in the SIL-TAPP cohort [$3287 (3218-3325)] than in patients in the CL-TAPP cohort [$3511 (3491-3599)]. Postoperatively, the occurrence rate of trocar site hernia was lower in the SIL-TAPP cohort (0, 0%) than in the CL-TAPP cohort (4, 7.7%), and the median (IQR) cosmetic score was significantly higher in the SIL-TAPP cohort [10 (10-10)] than in the CL-TAPP cohort [9 (9-10)]. CONCLUSION: SIL-TAPP repair did not increase the incidence of intraoperative and postoperative complications in female inguinal hernia patients. Moreover, female inguinal hernia patients who underwent SIL-TAPP repair had a lower probability of trocar site hernia and inferior epigastric vessel injury than female inguinal hernia patients who underwent CL-TAPP repair. In addition, female inguinal hernia patients who underwent SIL-TAPP repair reported a more aesthetically pleasing postoperative abdominal incision. Therefore, SIL-TAPP repair is a better option for the treatment of inguinal hernias in women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA