Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genet Mol Biol ; 47(3): e20240062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39162661

RESUMO

Melon (Cucumis melo L.) is an economically important horticultural crop. Spotted rind at maturity is an important appearance quality trait in melons. However, the gene controlling this trait remains unknown. In this study, the inheritance pattern of this trait was explored, and the candidate gene underlying this trait was also successfully identified. Genetic analysis showed that a single dominant gene, Cucumis melo Spotted Rind (CmSR), regulates the spotted rind trait. A preliminary genetic mapping analysis was conducted based on a BSA-seq approach. The CmAPRR2 gene was identified to be linked with the spotted rind trait and was located on the short arm of chromosome 4. It harbored two single-nucleotide mutations (chr4: 687014 G/A and chr4: 687244 C/A) in the non-spotted line 'Yellow 2', which may result in the alternative splicing of the transcript and an amino acid change in the respective protein, from proline to glutamine, respectively. Moreover, marker SNP687014-G/A was developed and co-segregated with the spotted rind trait. Therefore, it is speculated that the CmAPRR2 gene may be involved in the regulation of the spotted rind trait in melon. This study provides a theoretical foundation for further research on the gene regulatory mechanism of the rind color in melon.

2.
Insects ; 15(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392553

RESUMO

(1) Background: The three sloe bugs, Dolycoris baccarum, Dolycoris indicus, and Dolycoris penicillatus, are found in the Chinese mainland and are morphologically similar. The species boundaries and phylogenetic relationships of the three species remain uncertain; (2) Methods: In this study, we generated multiple mitochondrial genomes (mitogenomes) for each of the three species and conducted comparative mitogenomic analysis, species delimitation, and phylogenetic analysis based on these data; (3) Results: Mitogenomes of the three Dolycoris species are conserved in nucleotide composition, gene arrangement, and codon usage. All protein-coding genes (PCGs) were found to be under purifying selection, and the ND4 evolved at the fastest rate. Most species delimitation analyses based on the COI gene and the concatenated 13 PCGs retrieved three operational taxonomic units (OTUs), which corresponded well with the three Dolycoris species identified based on morphological characters. A clear-cut barcode gap was discovered between the interspecific and intraspecific genetic distances of the three Dolycoris species. Phylogenetic analyses strongly supported the monophyly of Dolycoris, with interspecific relationship inferred as (D. indicus + (D. baccarum + D. penicillatus)); (4) Conclusions: Our study provides the first insight into the species boundaries and phylogenetic relationships of the three Dolycoris species distributed across the Chinese mainland.

3.
Cancer Res ; 84(1): 84-100, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37874330

RESUMO

Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors. SIGNIFICANCE: Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/metabolismo , Linfócitos T , Hipóxia/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cytotherapy ; 26(2): 113-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37999667

RESUMO

BACKGROUND AIMS: Peritoneal carcinomatosis (PC) from colorectal cancer (CRC) is a highly challenging disease to treat. Systemic chimeric antigen receptor (CAR) T cells have shown impressive efficacy in hematologic malignancies but have been less effective in solid tumors. We explored whether intraperitoneal (i.p.) administration of CAR T cells could provide an effective and robust route of treatment for PC from CRC. METHODS: We generated second-generation carcinoembryonic antigen (CEA)-specific CAR T cells. Various animal models of PC with i.p. and extraperitoneal metastasis were treated by i.p. or intravenous (i.v.) administration of CEA CAR T cells. RESULTS: Intraperitoneally administered CAR T cells exhibited superior anti-tumor activity compared with systemic i.v. cell infusion in an animal model of PC. In addition, i.p. administration conferred a durable effect and protection against tumor recurrence and exerted strong anti-tumor activity in an animal model of PC with metastasis in i.p. or extraperitoneal organs. Moreover, compared with systemic delivery, i.p. transfer of CAR T cells provided increased anti-tumor activity in extraperitoneal tumors without PC. This phenomenon was further confirmed in an animal model of pancreatic carcinoma after i.p. administration of our newly constructed prostate stem cell antigen-directed CAR T cells. CONCLUSIONS: Taken together, our data suggest that i.p. administration of CAR T cells may be a robust delivery route for effective treatment of cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Receptores de Antígenos Quiméricos , Masculino , Animais , Antígeno Carcinoembrionário , Neoplasias Peritoneais/terapia , Linfócitos T , Imunoterapia Adotiva , Recidiva Local de Neoplasia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia
5.
Plant Dis ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923979

RESUMO

Ampelopsis grossedentata, commonly known as "Vine Tea" and well-recognized for its rich flavonoid content, is mainly distributed in the southern regions of the Yangtze River basin in China. These regions include Hunan, Hubei, Jiangxi, and Guizhou provinces. Vine Tea is mainly consumed as an herbal tea and has garnered attention for its reported health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and neuroprotective properties. It has been used to alleviate coughs and sore throats (Zhang et al., 2021; Wang et al., 2017; Gao et al., 2009). In the Zhangjiajie region of Hunan province alone, the Vine Tea planting area reached 7,670.5 hectares and produced commercial goods worth 1.417 billion RMB in 2022. In May 2021, leaf margins and veins fading to yellowing mottling, and crumpling of leaf blades in the shape of a boat symptoms were found in ~16% of Vine Tea plants in the Sanjiakuan Township, Yongding District, Zhangjiajie region (29°15'E, 110°30' N) (Figure 1a, b, c). (Figure 1a, b, c). Phytoplasma-like microbial cells (small oval shaped bacterial cells, around 1000 nm in size) were observed in sieve tube cells in the phloem of diseased leaves using transmission electron microscopy. No such cell was observed in the phloem of healthy leaves (Figure 2a, b). To investigate the potential association between phytoplasma and the observed symptoms of the diseased plants, total DNA was isolated from ten diseasedeaves and compared with ten healthy leaves from the same field using SteadyPure Plant Genomic DNA Extraction Kit. The isolated DNAs were analyzed first in a direct PCR using universal phytoplasma primer pair R16mF2/R16mR1 targeting the 16S rRNA gene (Gundersen and Lee 1996) and specific pair rpF1/rpR1 (Lee et al. 1998) targeting the DNA fragment encoding partial ribosomal proteins (rp) L22 (complete) and S3 and S19 (partial). The initial amplified products were used as templates and further amplified by nested PCR respectively with primer pair R16F2n/R16R2 for the 16S rRNA gene (Lee et al. 1998) and the rpF2/rpR2 primer pair for the rp gene (Martini et al. 2007). No amplification was obtained with DNA from healthy leaf samples using any of the four primer pairs. The amplified fragments from diseased leaves by nested PCR were cloned and sequenced (Qingke Biotech, China). The obtained sequences have been deposited in GenBank with accession numbers OR282806 for the 16S rRNA gene and GenBank OR353012 for the rp gene. BLASTn analysis revealed that the partial 16S rRNA gene sequence in our sample shared 99.4% nucleotide sequence identity with 'Candidatus Phytoplasma sp.' (MW364378) and 'Peony yellows phytoplasma' (KY814723) of the 16SrI group. Similarly, our rp gene sequence shared 99.6% nucleotide identity with the rpI group of phytoplasma such as the 'Balsamine virescence phytoplasma' (JN572890) and 'Paulownia witches'-broom phytoplasma' (HM146079). Phylogenetic analysis of the 16S rRNA and rp sequences using MEGA version 7.0 revealed that the phytoplasma strain associated with A. grossedentata yellow leaf syndrome in our study site belonged to the 16SrI (Candidatus Phytoplasma asteris) group of phytoplasma (Figure 3a, b). Using the interactive online phytoplasma classification tool iPhyClassifier (Zhao et al., 2009), virtual restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene sequences showed our strain having a distinct RFLP map but was closest to that of the onion yellow phytoplasma 16SrI-B subgroup (GenBank accession number: AP006628), with a similarity coefficient of 0.94 (Figure 4a, b). To confirm phytoplasma transmission, healthy plants were inoculated with three scions of infected plants of A. grossedentata. After 16 days, the new leaves of the inoculated A. grossedentata showed yellow leaf symptoms (Figure 5a, b, c), akin to the symptoms originally observed in the field, and the outer contour of the leaf margin appeared chlorotic. After 26 days, primer pairs R16mF2/R16R1 and R16F2n/R16R2 were used for nested PCR detection of phytoplasma in symptomatic A. grossedentata leaves. Phytoplasma was detected in the first and second leaves of symptomatic branches and leaves while negative control showed no amplification. Sequencing of the amplified fragments showed 100% nucleotide identity to the strain from the grafting source. Our results indicated that the pathogen and the disease can be transmitted by tissue grafting, consistent with the biological characteristics of phytoplasma, and further confirmed that the phytoplasma was the pathogen of yellow leaf syndrome of A. grossedentata. Toour knowledge, this is the first report of phytoplasma of group 16SrI affecting A. grossedentata.

7.
Mol Phylogenet Evol ; 184: 107802, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221926

RESUMO

Accurate taxonomy and delimitation are of great importance for pest control strategies and management programs. Here, we focus on Cletus (Insecta: Hemiptera: Coreidae), which includes many crop pests. The species boundaries still conflict and only cytochrome c oxidase subunit I (COI) barcoding has been previously used for molecular studies. We generated new mitochondrial genome and nuclear genome-wide SNPs to explore the species boundaries of 46 Cletus samples from China using multiple species delimitation approaches. All results recovered a monophyly with high support, except for two closely related species in clade I - C. punctiger and C. graminis. Mitochondrial data demonstrated admixture in clade I, while genome-wide SNPs unambiguously identified two separate species, which were confirmed by morphological classification. Inconsistent nuclear and mitochondrial data indicated mito-nuclear discordance. Mitochondrial introgression is the most likely explanation, and more extensive sampling and more comprehensive data are needed to ascertain a pattern. Accurate species delimitation will shed light on species status; thus, an accurate taxonomy is of particular concern, as there is a pressing need to implement precise control of agricultural pests and to perform further research on diversification.


Assuntos
Genoma Mitocondrial , Heterópteros , Animais , Filogenia , China , Mitocôndrias , Mitomicina
8.
Int J Biol Macromol ; 237: 123989, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921825

RESUMO

Megacopta cribraria, a bean pest causing tremendous economic losses in Asia, was discovered in North America in 2009. Although M. cribraria has become the focus of research on biological invasion and pest management, the lack of genomic resources limits in-depth studies. Here, we report the first chromosome-level genome of M. cribraria using Illumina, PacBio, and Hi-C data. The assembled genome size was 699.65 Mb, with a contig N50 of 1.43 Mb and a scaffold N50 of 109.27 Mb. >97.51 % of bases were successfully anchored to six chromosomes. Through genome annotation, a total of 13,308 coding genes were predicted, 96.3 % of which were successfully accessed function. Expanded gene families were involved in proteolysis, protein metabolism and nitrogen metabolism reflected the underlying genome basis for host adaptation during evolution. Transcriptome analysis revealed different gene expression patterns in antenna, mouthpart, head, leg, wing, and carcass body of the adult M. cribraria, respectively. Moreover, the expression profiles of the odorant receptor genes indicated the potential target genes for pest control. The high-quality chromosome-level genome will benefit further research on the adaptation, evolution, and population genetics of the M. cribraria that will assist in the pest management and tracking the biological invasion routes.


Assuntos
Heterópteros , Animais , Genoma , Genética Populacional , Controle de Pragas , Cromossomos , Filogenia
9.
Med Oncol ; 40(3): 89, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735165

RESUMO

CAR-T therapy has shown successful in the treatment of certain types of hematological malignancy, while the efficacy of CAR-T cell in treating solid tumors has been limited due to the exhaustion of CAR-T caused by the tumor microenvironment in solid tumors. Therefore, improving the exhaustion of CAR-T cell is one of the inspiring strategies for CAR-T treatment of solid tumors. As an important regulator in T cell immunity, the transcription factor RUNX3 not only negatively regulates the terminal differentiation T-bet gene, reducing the ultimate differentiation of T cells, but also increases the residency of T cells in non-lymphoid tissues and tumors. By overexpressing RUNX3 in CAR-T cells, we found that increasing the expression of RUNX3 maintained the low differentiation of CAR-T cells, further improving the exhaustion of CAR-T cells during antigen stimulation. In vitro, we found that RUNX3 could reduce the release of cytokines while maintaining CAR-T cells function. In re-challenge experiments, CAR-T cells overexpressing RUNX3 (Runx3-OE CAR-T) were safer than conventional CAR-T cells, while RUNX3 could also maintain the anti-tumor efficacy of CAR-T cells in vivo. Collectively, we found that Runx3-OE CAR-T cells can improve CAR-T phenotype and reduce cytokines release while maintaining CAR-T cells function, which may improve the safety of CAR-T therapy in clinical trials.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Citocinas/metabolismo , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
10.
Mol Phylogenet Evol ; 180: 107698, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587885

RESUMO

The water boatmen of Corixoidea, a group of aquatic bugs with more than 600 extant species, is one of the largest superfamilies of Nepomorpha. Contrary to the other nepomorphan lineages, the Corixoidea are most diverse in the Laurasian remnant Holarctic region. To explicitly test whether the present-day Holarctic distribution of diverse corixids is associated with the arising of the Laurasian landmass that was separated from Gondwana, we investigated the phylogeny, divergence times and historical biogeography of Corixoidea based on morphological and molecular characters sampled from 122 taxa representing all families, subfamilies, tribes and approximately 54 % of the genera. Our results were largely congruent with the phylogenetic relationships within the established nepomorphan phylogenetic context. The fossil calibrated chronogram, diversification analysis and ancestral ranges reconstruction indicated that Corixoidea began to diversify in Gondwana in the late Triassic approximately at 224 Ma and the arising of the most diverse subfamily Corixinae in Corixidae in the Holarctic region was largely congruent with the time of separation of Laurasia from Gondwana. The large-scale expansion of the temperate and cold zones on the northward-moving Laurasian landmass after the breakup of the Pangea provided new aquatic niches and ecological opportunities for promoting rapid diversification for the Holarctic corixid lineage.


Assuntos
Heterópteros , Humanos , Animais , Filogenia , Heterópteros/genética , Meio Ambiente , Fósseis
11.
Front Immunol ; 13: 1052717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532006

RESUMO

Introduction: The major challenge for universal chimeric antigen receptor T cell (UCAR-T) therapy is the inability to persist for a long time in patients leading to inferior efficacy clinically. The objective of this study was to design a novel UCAR-T cell that could avoid the occurrence of allo-rejection and provide effective resistance to allogeneic Natural Killer (NK) cell rejection, together with the validation of its safety and efficacy ex vivo and in vivo. Methods: We prepared T-cell receptor (TCR), Human leukocyte antigen (HLA)-I/II triple-edited (TUCAR-T) cells and evaluated the anti-tumor efficacy ex vivo and in vivo. We measured the resistance of exogenous HLA-E expressing TUCAR-T (ETUCAR-T) to NK rejection by using an enhanced NK. Furthermore, we established the safety and efficacy of this regimen by treating Nalm6 tumor-bearing mice with a repeated high-dose infusion of ETUCAR-T. Moreover, we analyzed the effects of individual gene deficiency CAR-T on treated mice and the changes in the transcriptional profiles of different gene-edited T cells via RNA-Seq. Results: Data showed that HLA-II editing didn't impair the anti-tumor efficacy of TUCAR-T ex vivo and in vivo and we found for the first time that HLA-II deficiency could facilitate the persistence of CAR-T. Contrastively, as the most commonly eliminated target in UCAR-T, TCR deficiency was found to be a key disadvantageous factor for the shorter-term anti-tumor efficacy in vivo. Our study demonstrated ETUCAR-T could effectively resist allogeneic NK rejection ex vivo and in vivo. Discussion: Our research provided a potential and effective strategy for promoting the persistence of UCAR-T cells in clinical application. And it reveals the potential key factors of the poor persistence of UCAR-T along with new insights for future development.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Antígenos de Histocompatibilidade Classe I , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Antígenos HLA-E
12.
Pest Manag Sci ; 78(11): 4871-4881, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181419

RESUMO

BACKGROUND: Correct identification together with information on distribution range, geographical origin and evolutionary history are the necessary basis for the management and control of invasive species. The bean bug Megacopta cribraria is a crucial agricultural pest of soybean. Recently, M. cribraria has invaded the United States and spread rapidly, causing severe reductions in soybean yields. However, the species boundary and phylogeographical pattern of this invasive bean bug are still unclear. RESULTS: The results of different species delimitation methods (Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Bayesian Poisson Tree Processes and Bayesian Phylogenetics and Phylogeography) strongly demonstrated that M. cribraria and Megacopta punctatissima represent the same species. M. punctatissima should not be considered a distinct species but rather a variety of M. cribraria. Phylogenetic analyses revealed three well-supported clades (Southeast Asia [SEA], East Asia continent [EAC] and Japan [JA]) with distinct geographical structures in the M. cribraria-M. punctatissima complex. The SEA clade was at the base of the phylogenetic tree, and the sister relationship between the EAC clade and JA clade was strongly supported. The split between the EAC clade and JA clade occurred at approximately 0.71 Ma, corresponding to the submergence period of the East China Sea land bridge. CONCLUSION: This study clarified the species boundary between M. cribraria and its closely related species and revealed the phylogeographical pattern and evolutionary history of M. cribraria. The species delimitation and phylogeography results achieved in this study could provide new insights into the monitoring and management of this agricultural pest. © 2022 Society of Chemical Industry.


Assuntos
Fabaceae , Heterópteros , Animais , Teorema de Bayes , Código de Barras de DNA Taxonômico , Heterópteros/genética , América do Norte , Filogenia , Filogeografia , Glycine max
13.
Foods ; 11(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35741881

RESUMO

For oil plants, the oil extraction method is a crucial factor in influencing the functional characteristics of the protein. However, reports of protein functionality as affected by the oil extraction process are scarce. In this study, field muskmelon seed (FMS) protein was extracted by Soxhlet extraction method (SE), organic solvent extraction method (OSE), aqueous extraction method (AE), and pressing extraction method (PE), and its structure, amino acid profile, physicochemical properties, and functionality were determined. Molecular weight distribution was similar for all FMS proteins, whereas protein aggregates contents were most excellent for SE and OSE. FMS protein comprised predominantly glutamic acid, leucine, aspartic acid, arginine, and proline. Total amino acids content was highest for SE. Differences in functionality between four FMS proteins for different oil extraction methods were vast. PE had the highest value of solubility, and AE exhibited the lowest. AE had the greatest water and oil holding capacity. PE presented better foaming and emulsion capacities than other samples. This study demonstrated that the extraction oil method could impact the protein's physicochemical and associated functional characteristics. High-quality plant oil and protein could be simultaneously obtained by modulating the oil extraction method in future research.

14.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482393

RESUMO

Holocene climate warming has dramatically altered biological diversity and distributions. Recent human-induced emissions of greenhouse gases will exacerbate global warming and thus induce threats to cold-adapted taxa. However, the impacts of this major climate change on transcontinental temperate species are still poorly understood. Here, we generated extensive genomic datasets for a water strider, Aquarius paludum, which was sampled across its entire distribution in Eurasia and used these datasets in combination with ecological niche modeling (ENM) to elucidate the influence of the Holocene and future climate warming on its population structure and demographic history. We found that A. paludum consisted of two phylogeographic lineages that diverged in the middle Pleistocene, which resulted in a "west-east component" genetic pattern that was probably triggered by Central Asia-Mongoxin aridification and Pleistocene glaciations. The diverged western and eastern lineages had a second contact in the Holocene, which shaped a temporary hybrid zone located at the boundary of the arid-semiarid regions of China. Future predictions detected a potentially novel northern corridor to connect the western and eastern populations, indicating west-east gene flow would possibly continue to intensify under future warming climate conditions. Further integrating phylogeographic and ENM analyses of multiple Eurasian temperate taxa based on published studies reinforced our findings on the "west-east component" genetic pattern and the predicted future northern corridor for A. paludum. Our study provided a detailed paradigm from a phylogeographic perspective of how transcontinental temperate species differ from cold-adapted taxa in their response to climate warming.


Assuntos
Biodiversidade , Água , Comunicação , Ecossistema , Variação Genética , Humanos , Filogenia , Filogeografia
15.
Foods ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267354

RESUMO

Field muskmelon seed oil was extracted by press extraction (PE), Soxhlet extraction (SE), organic extraction (OSE), and aqueous extraction (AE). The oils were then evaluated for their physicochemical properties, fatty acid composition, volatile compounds, and antioxidant properties. A high yield oil was found in the SE sample. The AE sample had the highest elevated acid and peroxide values, while PE and OSE had the highest oil iodine content. The oil samples did not differ significantly in their fatty acid profile depending on the extraction method. However, E-nose, HS-GC-IMS, and HS-SPME-GC-MS showed that the flavor composition of the four samples was significantly different, attributed to the changes in the composition and content of the compounds caused by the different extraction methods. Furthermore, the strongest FRAP and the free radical scavenging ability of DPPH and ABTS+ showed in the SE sample. In general, SE's seed oil has certain advantages when applied to the muskmelon seed oil industry.

16.
Front Plant Sci ; 13: 1067680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684781

RESUMO

In postharvest handling systems, refrigeration can extend fruit shelf life and delay decay via slowing ripening progress; however, it selectively alters the biosynthesis of flavor-associated volatile organic compounds (VOCs), which results in reduced flavor quality. Volatile esters are major contributors to melon fruit flavor. The more esters, the more consumers enjoy the melon fruit. However, the effects of chilling on melon flavor and volatiles associated with consumer liking are yet to be fully understood. In the present study, consumer sensory evaluation showed that chilling changed the perception of melon fruit. Total ester content was lower after chilling, particularly volatile acetate esters (VAEs). Transcriptomic analysis revealed that transcript abundance of multiple flavor-associated genes in fatty acid and amino acid pathways was reduced after chilling. Additionally, expression levels of the transcription factors (TFs), such as NOR, MYB, and AP2/ERF, also were substantially downregulated, which likely altered the transcript levels of ester-associated pathway genes during cold storage. VAE content and expression of some key genes recover after transfer to room temperature. Therefore, chilling-induced changes of VAE profiles were consistent with expression patterns of some pathway genes that encode specific fatty acid- and amino acid-mobilizing enzymes as well as TFs involved in fruit ripening, metabolic regulation, and hormone signaling.

17.
PeerJ ; 9: e11294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996279

RESUMO

BACKGROUND: The mitochondrial genome (mitogenome) has been extensively used for phylogenetic and evolutionary analysis in Diptera, but the study of mitogenome is still scarce in the family Chironomidae. METHODS: Here, the first complete mitochondrial genomes of four Chironomid species representing Diamesinae, Orthocladiinae, Prodiamesinae and Tanypodinae are presented. Coupled with published mitogenomes of two, a comparative mitochondrial genomic analysis between six subfamilies of Chironomidae was carried out. RESULTS: Mitogenomes of Chironomidae are conserved in structure, each contains 37 typical genes and a control region, and all genes arrange the same gene order as the ancestral insect mitogenome. Nucleotide composition is highly biased, the control region displayed the highest A + T content. All protein coding genes are under purifying selection, and the ATP8 evolves at the fastest rate. In addition, the phylogenetic analysis covering six subfamilies within Chironomidae was conducted. The monophyly of Chironomidae is strongly supported. However, the topology of six subfamilies based on mitogenomes in this study is inconsistent with previous morphological and molecular studies. This may be due to the high mutation rate of the mitochondrial genetic markers within Chironomidae. Our results indicate that mitogenomes showed poor signals in phylogenetic reconstructions at the subfamily level of Chironomidae.

18.
3 Biotech ; 11(2): 69, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33489686

RESUMO

To enhance the specific activity and catalytic efficiency (k cat/K m) of an NADH-dependent LpPPR, its directed modification was performed based on the computer-aided design using molecular docking simulation and multiple sequence alignment. Firstly, five single-site variants of an LpPPR-encoding gene (lpppr) were amplified and expressed in E. coli BL21 (DE3). The asymmetric reduction of 20 mM phenylpyruvic acid (PPA) was carried out using 50 mg/mL E. coli/lpppr R53Q or /lpppr A79V whole wet cells at 37 °C for 20 min, giving d-phenyllactic acid (PLA) with 41.1 or 44.3% yield, being 1.17- or 1.26-fold that by E. coli/lpppr. Secondly, double-site variants were obtained by saturation mutagenesis of Ala79 in LpPPRR53Q. Among all tested E. coli transformants, E. coli/lpppr R53Q/A79V exhibited the highest d-PLA yield of 85.3%. The specific activity and k cat/K m of the purified LpPPRR53Q/A79V increased to 67.5 U/mg and 169.8 mM-1 s-1, which were 3.0- and 13.2-fold those of LpPPR, respectively. Finally, the catalytic mechanism analysis of LpPPRR53Q/A79V by molecular docking simulation indicated that the replacement of Arg53 in LpPPR with Gln expanded its substrate-binding pocket, while that Ala79 with Val formed an additional π-sigma interaction with phenyl group of PPA. SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13205-020-02633-3) contains supplementary material, which is available to authorized users.

19.
Int J Biol Macromol ; 164: 2795-2803, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763395

RESUMO

A novel epoxide hydrolase from Glycine max, designated GmEH3, was excavated based on the computer-aided analysis. Then, gmeh3, a GmEH3-encoding gene, was cloned and successfully expressed in E. coli Rosetta(DE3). Among the ten investigated rac-epoxides, GmEH3 possessed the highest and best complementary regioselectivities (regioselectivity coefficients, αS = 93.7% and ßR = 97.2%) in the asymmetric hydrolysis of rac-m-chlorostyrene oxide (5a), and the highest enantioselectivity (enantiomeric ratio, E = 55.6) towards rac-phenyl glycidyl ether (7a). The catalytic efficiency (kcatS/KmS = 2.50 mM-1 s-1) of purified GmEH3 for (S)-5a was slightly higher than that (kcatR/KmR = 1.52 mM-1 s-1) for (R)-5a, whereas the kcat/Km (5.16 mM-1 s-1) for (S)-7a was much higher than that (0.09 mM-1 s-1) for (R)-7a. Using 200 mg/mL wet cells of E. coli/gmeh3 as the biocatalyst, the scale-up enantioconvergent hydrolysis of 150 mM rac-5a at 25 °C for 1.5 h afforded (R)-5b with 90.2% eep and 95.4% yieldp, while the kinetic resolution of 500 mM rac-7a for 2.5 h retained (R)-7a with over 99% ees and 43.2% yields. Furthermore, the sources of high regiocomplementarity of GmEH3 for (S)- and (R)-5a as well as high enantioselectivity towards rac-7a were analyzed via molecular docking (MD) simulation.


Assuntos
Biologia Computacional/métodos , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Glycine max/enzimologia , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Epóxido Hidrolases/química , Compostos de Epóxi/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Hidrólise , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Glycine max/genética
20.
Adv Mater ; 28(20): 3922-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26514111

RESUMO

A novel rigid donor monomer, indacenodithieno[3,2-b]thiophene (IDTT), containing linear alkyl chains, is reported. Its copolymer with benzothiadiazole is an excellent p-type semiconductor, affording a mobility of 6.6 cm(2) V(-1) s(-1) in top-gated field-effect transistors with pentafluorobenzenethiol-modified Au electrodes. Electrode treatment with solution-deposited copper(I) thiocyanate (CuSCN) has a beneficial hole-injection/electron-blocking effect, further enhancing the mobility to 8.7 cm(2) V(-1) s(-1) .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA