Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1480-1488, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665676

RESUMO

Biomolecular condensates are dynamic subcellular compartments that lack surrounding membranes and can spatiotemporally organize the cellular biochemistry of eukaryotic cells. However, such dynamic organization has not been realized in prokaryotes that naturally lack organelles, and strategies are urgently needed for dynamic biomolecular compartmentalization. Here we develop a light-switchable condensate system for on-demand dynamic organization of functional cargoes in the model prokaryotic Escherichia coli cells. The condensate system consists of two modularly designed and genetically encoded fusions that contain a condensation-enabling scaffold and a functional cargo fused to the blue light-responsive heterodimerization pair, iLID and SspB, respectively. By appropriately controlling the biogenesis of the protein fusions, the condensate system allows rapid recruitment and release of cargo proteins within seconds in response to light, and this process is also reversible and repeatable. Finally, the system is demonstrated to dynamically control the subcellular localization of a cell division inhibitor, SulA, which enables the reversible regulation of cell morphologies. Therefore, this study provides a new strategy to dynamically control cellular processes by harnessing light-controlled condensates in prokaryotic cells.

2.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38587986

RESUMO

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Assuntos
Fibroínas , Peptídeos , Resistência à Tração , Fibroínas/química , Fibroínas/genética , Peptídeos/química , Seda/química , Animais , Motivos de Aminoácidos , Nanofibras/química , Aranhas/química
3.
Curr Opin Biotechnol ; 85: 103062, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199036

RESUMO

Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas
4.
Nat Commun ; 15(1): 195, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172123

RESUMO

Soft robots capable of efficiently implementing tasks in fluid-immersed environments hold great promise for diverse applications. However, it remains challenging to achieve robotization that relies on dynamic underwater adhesion and morphing capability. Here we propose the construction of such robots with designer protein materials. Firstly, a resilin-like protein is complexed with polyoxometalate anions to form hydrogels that can rapidly switch between soft adhesive and stiff non-adhesive states in aqueous environments in response to small temperature variation. To realize remote control over dynamic adhesion and morphing, Fe3O4 nanoparticles are then integrated into the hydrogels to form soft robots with photothermal and magnetic responsiveness. These robots are demonstrated to undertake complex tasks including repairing artificial blood vessel, capturing and delivering multiple cargoes in water under cooperative control of infrared light and magnetic field. These findings pave an avenue for the creation of protein-based underwater robots with on-demand functionalities.


Assuntos
Substitutos Sanguíneos , Robótica , Humanos , Fenômenos Físicos , Hidrogéis , Raios Infravermelhos , Aderências Teciduais , Água
5.
Biomacromolecules ; 24(4): 1774-1783, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36952229

RESUMO

3,4-Dihydroxyphenylalanine (DOPA), a naturally occurring yet noncanonical amino acid, endows protein polymers with diverse chemical reactivities and novel functionalities. Although many efforts have been made to incorporate DOPA into proteins, the incorporation efficiency and production titer remain low and severely hinder the exploration of these peculiar proteins for biomaterial fabrication. Here, we report an efficient biosynthetic strategy to produce large amounts of DOPA-incorporated structural proteins for the fabrication of hydrogels with tunable mechanical properties. First, synthetic genes were constructed that encode repetitive resilin-like proteins (RLPs) with varying proportions of tyrosine residues and molecular weights (Mw). Decoding of these genes into RLPs incorporated with DOPA was achieved via mis-aminoacylation of DOPA by endogenous tyrosyl-tRNA synthetase (TyrRS) in recombinant Escherichia coli cells. By developing a stoichiometry-guided two-phase culture strategy, we achieved independent control of the bacterial growth and protein synthesis phases. This enabled hyperproduction of the DOPA-incorporated RLPs at gram-per-liter levels and with a high DOPA incorporation yield of 76-85%. The purified DOPA-containing RLPs were then successfully cross-linked into bulk hydrogels via facile DOPA-Fe3+ complexations. Interestingly, these hydrogels exhibited viscoelastic and self-healing properties that are highly dependent on the catechol content and Mw of the RLPs. Finally, exploration of the molecular cross-linking mechanisms revealed that higher DOPA contents of the proteins would result in the concomitant occurrence of metal coordination and oxidative covalent cross-linking. In summary, our results suggest a useful platform to generate DOPA-functionalized protein materials and provide deeper insights into the gelation systems based on DOPA chemistry.


Assuntos
Di-Hidroxifenilalanina , Hidrogéis , Di-Hidroxifenilalanina/química , Hidrogéis/química , Proteínas de Insetos/química , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA