Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Nat Commun ; 15(1): 3949, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729934

RESUMO

Topological domain structures have drawn great attention as they have potential applications in future electronic devices. As an important concept linking the quantum and classical magnetism, a magnetic Bloch point, predicted in 1960s but not observed directly so far, is a singular point around which magnetization vectors orient to nearly all directions. Here we show polar Bloch points in tensile-strained ultrathin ferroelectric PbTiO3 films, which are alternatively visualized by phase-field simulations and aberration-corrected scanning transmission electron microscopic imaging. The phase-field simulations indicate local steady-state negative capacitance around the Bloch points. The observation of polar Bloch points and their emergent properties consequently implies novel applications in future integrated circuits and low power electronic devices.

2.
Adv Mater ; : e2401694, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721895

RESUMO

Hydrazine oxidation-assisted water splitting is a critical technology to tackle the high energy consumption in large-scale H2 production. Ru-based electrocatalysts hold promise for synergetic hydrogen reduction (HER) and hydrazine oxidation (HzOR) catalysis but are hindered by excessive superficial adsorption of reactant intermediate. Herein, this work designs Ru cluster anchoring on NiFe-LDH (denoted as Ruc/NiFe-LDH), which effectively enhances the intermediate adsorption capacity of Ru by constructing Ru─O─Ni/Fe bridges. Notably, it achieves an industrial current density of 1 A cm-2 at an unprecedentedly low voltage of 0.43 V, saving 3.94 kWh m-3 H2 in energy, and exhibits remarkable stability over 120 h at a high current density of 5 A cm-2. Advanced characterizations and theoretical calculation reveal that the presence of Ru─O─Ni/Fe bridges widens the d-band width (Wd) of the Ru cluster, leading to a lower d-band center and higher electron occupation on antibonding orbitals, thereby facilitating moderate adsorption energy and enhanced catalytic activity of Ru.

3.
J Inflamm Res ; 17: 2531-2546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689798

RESUMO

Ferroptosis, a type of programmed cell death that relies on iron, is distinct in terms of its morphological, biochemical and genetic features. Unlike other forms of cell death, such as autophagy, apoptosis, necrosis, and pyroptosis, ferroptosis is primarily caused by lipid peroxidation. Cells that die due to iron can potentially trigger an immune response which intensifies inflammation and causes severe inflammatory reactions that eventually lead to multiple organ failure. In recent years, ferroptosis has been identified in an increasing number of medical fields, including neurological pathologies, chronic liver diseases and sepsis. Ferroptosis has the potential to cause an inflammatory tempest, with many of the catalysts and pathological indications of respiratory ailments being linked to inflammatory reactions. The growing investigation into ferroptosis in respiratory disorders has also garnered significant interest to better understand the mechanism of ferroptosis in these diseases. In this review, the recent progress in understanding the molecular control of ferroptosis and its mechanism in different respiratory disorders is examined. In addition, this review discusses current challenges and prospects for understanding the link between respiratory diseases and ferroptosis.

4.
World J Gastroenterol ; 30(14): 2038-2058, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38681131

RESUMO

BACKGROUND: Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM: To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS: AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS: Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION: The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.


Assuntos
Ceruletídeo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas , Pancreatite , Fatores de Transcrição , Animais , Ceruletídeo/toxicidade , Camundongos , Pancreatite/genética , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/metabolismo , Perfilação da Expressão Gênica/métodos , Pâncreas/patologia , Pâncreas/metabolismo , Humanos , Transcriptoma , Masculino , Transdução de Sinais , Células Acinares/metabolismo , Células Acinares/patologia
5.
Int J Biol Macromol ; 267(Pt 2): 131577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615853

RESUMO

Chondroitin sulphates (CSs) are the most well-known glycosaminoglycans (GAGs) found in any living organism, from microorganisms to invertebrates and vertebrates (including humans), and provide several health benefits. The applications of CSs are numerous including tissue engineering, osteoarthritis treatment, antiviral, cosmetics, and skincare applications. The current commercial production of CSs mostly uses animal, bovine, porcine, and avian tissues as well as marine organisms, marine mammals, sharks, and other fish. The production process consists of tissue hydrolysis, protein removal, and purification using various methods. Mostly, these are chemical-dependent and are complex, multi-step processes. There is a developing trend for abandonment of harsh extraction chemicals and their substitution with different green-extraction technologies, however, these are still in their infancy. The quality of CSs is the first and foremost requirement for end-applications and is dependent on the extraction and purification methodologies used. The final products will show different bio-functional properties, depending on their origin and production methodology. This is a comprehensive review of the characteristics, properties, uses, sources, and extraction methods of CSs. This review emphasises the need for extraction and purification processes to be environmentally friendly and gentle, followed by product analysis and quality control to ensure the expected bioactivity of CSs.


Assuntos
Sulfatos de Condroitina , Animais , Sulfatos de Condroitina/química , Humanos , Cosméticos/química , Engenharia Tecidual
6.
Front Microbiol ; 15: 1355225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572243

RESUMO

Background: Alcoholic liver disease (ALD) is exacerbated by disruptions in intestinal microecology and immune imbalances within the gut-liver axis. The present study assesses the therapeutic potential of combining Akkermansia muciniphila (A. muciniphila) with inosine in alleviating alcohol-induced liver injury. Methods: Male C57BL/6 mice, subjected to a Lieber-DeCarli diet with 5% alcohol for 4 weeks, served as the alcoholic liver injury model. Various analyzes, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), ELISA, immunochemistry, 16S rRNA gene sequencing, and flow cytometry, were employed to evaluate liver injury parameters, intestinal barrier function, microbiota composition, and immune responses. Results: Compared to the model group, the A. muciniphila and inosine groups exhibited significantly decreased alanine aminotransferase, aspartate aminotransferase, and lipopolysaccharide (LPS) levels, reduced hepatic fat deposition and neutrophil infiltration, alleviated oxidative stress and inflammation, and increased expression of intestinal tight junction proteins (Claudin-1, Occludin, and ZO-1). These effects were further pronounced in the A. muciniphila and inosine combination group compared to individual treatments. While alcohol feeding induced intestinal dysbiosis and gut barrier disruption, the combined treatment reduced the abundance of harmful bacteria (Oscillibacter, Escherichia/Shigella, and Alistipes) induced by alcohol consumption, promoting the growth of butyrate-producing bacteria (Akkermansia, Lactobacillus, and Clostridium IV). Flow cytometry revealed that alcohol consumption reduced T regulatory (Treg) populations while increasing those of T-helper (Th) 1 and Th17, which were restored by A. muciniphila combined with inosine treatment. Moreover, A. muciniphila and inosine combination increased the expression levels of intestinal CD39, CD73, and adenosine A2A receptor (A2AR) along with enhanced proportions of CD4+CD39+Treg and CD4+CD73+Treg cells in the liver and spleen. The A2AR antagonist KW6002, blocked the beneficial effects of the A. muciniphila and inosine combination on liver injury in ALD mice. Conclusion: This study reveals that the combination of A. muciniphila and inosine holds promise for ameliorating ALD by enhancing the gut ecosystem, improving intestinal barrier function, upregulating A2AR, CD73, and CD39 expression, modulating Treg cells functionality, and regulating the imbalance of Treg/Th17/Th1 cells, and these beneficial effects are partly A2AR-dependent.

7.
Sci Adv ; 10(14): eadl1884, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579002

RESUMO

Introducing natural Bouligand structure into synthetics is expected to develop high-performance structural materials. Interfibrous interface is critical to load transfer, and mechanical functionality of bioinspired Bouligand structure yet receives little attention. Here, we propose one kind of hierarchical and reconfigurable interfibrous interface based on moderate orderliness to mechanically reinforce bioinspired Bouligand structure. The interface imparted by moderate alignment of adaptable networked nanofibers hierarchically includes nanofiber interlocking and hydrogen-bonding (HB) network bridging, being expected to facilitate load transfer and structural stability through dynamic adjustment in terms of nanofiber sliding and HB breaking-reforming. As one demonstration, the hierarchical and reconfigurable interfibrous interface is constructed based on moderate alignment of networked bacterial cellulose nanofibers. We show that the resultant bioinspired Bouligand structural material exhibits unusual strengthening and toughening mechanisms dominated by interface-microstructure multiscale coupling. The proposed interfibrous interface enabled by moderate orderliness would provide mechanical insight into the assembly of widely existing networked nanofiber building blocks toward high-performance macroscopic bioinspired structural assemblies.

8.
J Agric Food Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607252

RESUMO

Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-ß-primeveroside and linalyl-ß-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-ß-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-ß-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-ß-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.

9.
Inorg Chem ; 63(18): 8418-8425, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38644568

RESUMO

Developing catalysts with high catalytic activity and stability in acidic media is crucial for advancing hydrogen production in proton exchange membrane water electrolyzers (PEMWEs). To this end, a self-supported WO3@RuO2 nanowire structure was grown in situ on a titanium mesh using hydrothermal and ion-exchange methods. Despite a Ru loading of only 0.098 wt %, it achieves an overpotential of 246 mV for the oxygen evolution reaction (OER) at a current density of 10 mA·cm-2 in acidic 0.5 M H2SO4 while maintaining excellent stability over 50 h, much better than that of the commercial RuO2. After the establishment of the WO3@RuO2 heterostructure, a reduced overpotential of the rate-determining step from M-O* to M-OOH* is confirmed by the DFT calculation. Meanwhile, its enhanced OER kinetics are also greatly improved by this self-supported system in the absence of the organic binder, leading to a reduced interface resistance between active sites and electrolytes. This work presents a promising approach to minimize the use of noble metals for large-scale PEMWE applications.

10.
Front Immunol ; 15: 1392099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686384

RESUMO

Background: Asparaginase (ASNase) is a crucial part of acute leukemia treatment, but immune responses to the agent can reduce its effectiveness and increase the risk of relapse. Currently, no reliable and validated biomarker predicts ASNase-induced hypersensitivity reactions during therapy. We aimed to identify predictive biomarkers and determine immune cells responsible for anaphylaxis using a murine model of ASNase hypersensitivity. Methods: Our preclinical study uses a murine model to investigate predictive biomarkers of ASNase anaphylaxis, including anti-ASNase antibody responses, immune complex (IC) levels, ASNase-specific binding to leukocytes or basophils, and basophil activation. Results: Our results indicate that mice immunized to ASNase exhibited dynamic IgM, IgG, and IgE antibody responses. The severity of ASNase-induced anaphylaxis was found to be correlated with levels of IgG and IgE, but not IgM. Basophils from immunized mice were able to recognize and activate in response to ASNase ex vivo, and the extent of recognition and activation also correlated with the severity of anaphylaxis observed. Using a multivariable model that included all biomarkers significantly associated with anaphylaxis, independent predictors of ASNase-induced hypersensitivity reactions were found to be ASNase IC levels and ASNase-specific binding to leukocytes or basophils. Consistent with our multivariable analysis, we found that basophil depletion significantly protected mice from ASNase-induced hypersensitivity reactions, supporting that basophils are essential and can be used as a predictive marker of ASNase-induced anaphylaxis. Conclusions: Our study demonstrates the need for using tools that can detect both IC- and IgE-mediated hypersensitivity reactions to mitigate the risk of ASNase-induced hypersensitivity reactions during treatment.


Assuntos
Anafilaxia , Asparaginase , Basófilos , Hipersensibilidade a Drogas , Imunoglobulina E , Animais , Asparaginase/efeitos adversos , Asparaginase/imunologia , Basófilos/imunologia , Basófilos/metabolismo , Camundongos , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/diagnóstico , Anafilaxia/imunologia , Anafilaxia/induzido quimicamente , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Feminino , Modelos Animais de Doenças , Biomarcadores , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Antineoplásicos/efeitos adversos
11.
Food Chem ; 448: 139067, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547713

RESUMO

The Fujian and Yunnan provinces in China are the most representative origins of white tea. However, the key differences in the chemical constituents of the two white teas have rarely been revealed. In this study, a comprehensive comparison of the aroma profiles, chiral volatiles, and glycosidically bound volatiles (GBVs) in Fujian and Yunnan white teas was performed, and 174 volatiles and 28 enantiomers, including 22 volatiles and six GBVs, were identified. Linalool, linalyl-ß-primeveroside (LinPrim), and α-terpineol presented the opposite dominant configurations in Fujian and Yunnan white teas, and the chiral GBVs were firstly quantified with significant differences in the contents of R-LinPrim and ß-d-glucopyranosides of (2R, 5R)-linalool oxide A and (2R, 5S)-linalool oxide B. Moreover, discrimination functions for Fujian and Yunnan white teas were created using nine key variables with excellent reliability and efficiency. These results provide a new method for objectively distinguishing authentic white teas according to geographical origin.

12.
Small ; : e2308286, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431926

RESUMO

The prevalence of drug-resistant bacteria presents a significant challenge to the antibiotic treatment of Helicobacter pylori (H. pylori), while traditional antimicrobial agents often suffer from shortcomings such as poor gastric retention, inadequate alleviation of inflammation, and significant adverse effects on the gut microbiota. Here, a selenized chitosan (CS-Se) modified bismuth-based metal-organic framework (Bi-MOF@CS-Se) nanodrug is reported that can target mucin through the charge interaction of the outer CS-Se layer to achieve mucosal adhesion and gastric retention. Additionally, the Bi-MOF@CS-Se can respond to gastric acid and pepsin degradation, and the exposed Bi-MOF exhibits excellent antibacterial properties against standard H. pylori as well as clinical antibiotic-resistant strains. Remarkably, the Bi-MOF@CS-Se effectively alleviates inflammation and excessive oxidative stress by regulating the expression of inflammatory factors and the production of reactive oxygen species (ROS), thereby exerting therapeutic effects against H. pylori infection. Importantly, this Bi-MOF@CS-Se nanodrug does not affect the homeostasis of gut microbiota, providing a promising strategy for efficient and safe treatment of H. pylori infection.

13.
Adv Mater ; : e2401271, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549262

RESUMO

The advancement of aqueous micro-supercapacitors offers an enticing prospect for a broad spectrum of applications, spanning from wearable electronics to micro-robotics and sensors. Unfortunately, conventional micro-supercapacitors are characterized by low capacity and slopy voltage profiles, limiting their energy density capabilities. To enhance the performance of these devices, the use of 2D MXene-based compounds has recently been proposed. Apart from their capacitive contributions, these structures can be loaded with redox-active nanowires which increase their energy density and stabilize their operation voltage. However, introducing rigid nanowires into MXene films typically leads to a significant decline in their mechanical properties, particularly in terms of flexibility. To overcome this issue, super stretchable micro-pseudocapacitor electrodes composed of MXene nanosheets and in situ reconstructed Ag nanoparticles (Ag-NP-MXene) are herein demonstrated, delivering high energy density, stable operation voltage of ≈1 V, and fast charging capabilities. Careful experimental analysis and theoretical simulations of the charging mechanism of the Ag-NP-MXene electrodes reveal a dual nature charge storage mechanism involving ad(de)sorption of ions and conversion reaction of Ag nanoparticles. The superior mechanical properties of synthesized films obtained through in situ construction of Ag-NP-MXene structure show an ultra stretchability, allowing the devices to provide stable voltage and energy output even at 100% elongation.

14.
Eur J Intern Med ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38538416

RESUMO

OBJECTIVES: There are scarce prospective data on recurrent hypertriglyceridemia-associated acute pancreatitis (HTG-AP). This study aimed to investigate the incidence, potential prognostic factors, and clinical relevance of recurrent HTG-AP. METHODS: This study is a multicenter, prospective cohort study. Adult patients with the first HTG-AP attack enrolled in the PERFORM registry between November 2020 and December 2021 were involved. All the study patients were followed up for more than two years with a two-round schedule. The Cox proportional-hazards model was applied to analyze the potential factors. Quality of life was evaluated using the EuroQol five-dimensional five-level health scale (EQ-5D-5L). RESULTS: A total of 184 patients from 25 sites were included in the study, and 161 patients completed the two-round follow-up. Among them, the mean follow-up time for the study patients was 31±4 months, and the incidence rate of recurrent HTG-AP attack was 23 % (37/161). All patients with recurrent episodes required readmission to the hospital. The EQ visual analog scale (VAS) score was significantly lower in patients with recurrent episodes compared to those without (76±10 vs. 82±12; P = 0.02) at the latest follow-up. Age <40 years old (hazard ratio [HR], 3.6; 95 % confidence interval [CI], 1.5-8.7; P = 0.004) and a history of diabetes (HR, 2.6; 95 %CI, 1.3-5.1; P = 0.005) were identified as potential predictor factors for recurrence. CONCLUSIONS: Recurrence of HTG-AP is common, especially for younger patients with diabetes. Recurrence necessitated additional hospital readmissions and was associated with compromised quality of life.

15.
Nano Lett ; 24(14): 4082-4090, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38526914

RESUMO

The generally nonpolar SrTiO3 has attracted more attention recently because of its possibly induced novel polar states and related paraelectric-ferroelectric phase transitions. By using controlled pulsed laser deposition, high-quality, ultrathin, and strained SrTiO3 layers were obtained. Here, transmission electron microscopy and theoretical simulations have unveiled highly polar states in SrTiO3 films even down to one unit cell at room temperature, which were stabilized in the PbTiO3/SrTiO3/PbTiO3 sandwich structures by in-plane tensile strain and interfacial coupling, as evidenced by large tetragonality (∼1.05), notable polar ion displacement (0.019 nm), and thus ultrahigh spontaneous polarization (up to ∼50 µC/cm2). These values are nearly comparable to those of the strong ferroelectrics as the PbZrxTi1-xO3 family. Our findings provide an effective and practical approach for integrating large strain states into oxide films and inducing polarization in nonpolar materials, which may broaden the functionality of nonpolar oxides and pave the way for the discovery of new electronic materials.

16.
Exp Mol Med ; 56(4): 836-849, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556545

RESUMO

Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Animais , Exossomos/metabolismo , Portadores de Fármacos/química , Terapia Genética/métodos
17.
ISA Trans ; 147: 22-35, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311496

RESUMO

This article investigates the stabilization issue of highly non-linear hybrid stochastic delayed networks (HSDNs) via periodic self-triggered control under impulse (PS-TCI). Firstly, the existence of a unique global solution for highly non-linear HSDNs under PS-TCI is studied. Then, a stabilization criterion for highly non-linear HSDNs is established, by combining a graph-theoretic approach with a novel Lyapunov-based analysis, based on a 'genuine' Lyapunov function defined by introducing an auxiliary timer. Therein, the less conservative polynomial growth condition and local Lipschitz condition for the drift and diffusion coefficients are used than the linear growth condition and global Lipschitz condition. Meanwhile, the design idea of PS-TCI is based on the evolution of an upper bound of the mathematical expectation for Lyapunov function (not directly Lyapunov function or system state), which implies that the triggered instant of PS-TCI is not a random variable. Finally the theoretical results are employed to study the stability of a class of FitzHugh-Nagumo circuits networks and the central pattern generators networks of a hexapod robot, and correlative numerical simulations are provided for demonstration.

18.
Surg Endosc ; 38(4): 1877-1883, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307960

RESUMO

BACKGROUND: Endoscopic submucosal dissection (ESD) was widely used for the removal of esophageal tumors, and post-endoscopic submucosal dissection electrocoagulation syndrome (PEECS) was one of the postoperative adverse events. The aim of this research was to develop and validate a model to predict electrocoagulation syndrome after endoscopic submucosal dissection of esophageal tumors. MATERIALS AND METHODS: Patients who underwent esophageal ESD in our hospital were retrospectively included. A predictive nomogram was established based on the results of multivariate logistic regression analysis, and bootstrapping resampling was used for internal validation. Besides, the clinical usefulness of the nomogram was evaluated using decision curve analysis (DCA) and clinical impact curve. RESULTS: A total of 552 patients who underwent esophageal ESD were included in the study, and the incidence of PPECS was 12.5% (69/552). Risk factors associated with PEECS (p < 0.1) were analyzed by multivariate logistic regression analysis, and the final model included four variables, namely gender, diabetes, tumor size and operation time. The predictive nomogram was constructed based on the above four variables, and the area under the ROC curve (AUC) was 0.811 (95% CI 0.767-0.855). The calibration curve of the nomogram presented good agreement between the predicted and actual probabilities. DCA showed that the model improved patient outcomes by helping to assess the risk of PEECS in patients compared to an all-or-no treatment strategy. In addition, the clinical impact curve of the model also indicates that the nomogram has a high clinical net benefit. CONCLUSION: In conclusion, we have developed a predictive nomogram for PEECS after ESD for esophageal tumors with good predictive accuracy and discrimination. This predictive nomogram can be effectively used to identify high-risk patients with PEECS, which will help clinicians in clinical decision-making and early intervention.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Humanos , Nomogramas , Estudos Retrospectivos , Ressecção Endoscópica de Mucosa/efeitos adversos , Neoplasias Esofágicas/patologia , Eletrocoagulação/efeitos adversos
19.
Heliyon ; 10(4): e25748, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384516

RESUMO

Introduction: Fever is one of the postoperative complications of endoscopic submucosal dissection (ESD) and its derivative technology. However, there are few studies on risk factors for fever after ESD and its derivative technology. The aim of this study was to determine the incidence and related risk factors after ESD and its derivative technology for gastric lesions. Materials and methods: A retrospective review of patients with gastric lesions who were treated by ESD and its derivative technology in our hospital from January 2014 to January 2019 was conducted. Results: A total of 1955 patients were included in the present study. A total of 451 (23.1 %) patients presented with fever after ESD and its derived techniques. The highest fever temperature was 37.6 ± 3.12 °C, and the number of days with fever was 1.48 ± 0.85. Through single factor and multiple factor analysis, age (OR: 1.261, 95% CI: 1.009-1.576, p < 0.05), procedure time (OR: 1.457, 95% CI: 1.053-2.016, p < 0.05), postoperative gastric tube placement (OR: 2.098, 95% CI: 1:616-2.723, p < 0.05), intraoperative hemorrhage (OR: 1.537, 95% CI: 1.196-1.974, p < 0.05) and perforation (OR: 1.970, 95% CI: 1.531-2.535, p < 0.05) were independent risk factors for postoperative fever. Conclusion: Age ≥56 years old, procedure time ≥60 min, gastric tube placement, intraoperative hemorrhage and perforation were independent risk factors for postoperative fever after gastric ESD and its derivative technology. Attention should be given to such patients to minimize the risk of postoperative fever.

20.
Adv Mater ; : e2313228, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330391

RESUMO

Electronic skin (e-skin) capable of acquiring environmental and physiological information has attracted interest for healthcare, robotics, and human-machine interaction. However, traditional 2D e-skin only allows for in-plane force sensing, which limits access to comprehensive stimulus feedback due to the lack of out-of-plane signal detection caused by its 3D structure. Here, a dimension-switchable bioinspired receptor is reported to achieve multimodal perception by exploiting film kirigami. It offers the detection of in-plane (pressure and bending) and out-of-plane (force and airflow) signals by dynamically inducing the opening and reclosing of sensing unit. The receptor's hygroscopic and thermoelectric properties enable the sensing of humidity and temperature. Meanwhile, the thermoelectric receptor can differentiate mechanical stimuli from temperature by the voltage. The development enables a wide range of sensory capabilities of traditional e-skin and expands the applications in real life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA