Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674715

RESUMO

Bacillus velezensis has gained increasing recognition as a probiotic for improving animal growth performance and gut health. We identified six B. velezensis strains from sixty Bacillus isolates that were isolated from the cecal samples of fifteen different chicken breeds. We characterized the probiotic properties of these six B. velezensis strains. The effect of a selected strain (B. velezensis CML532) on chicken growth performance under normal feeding and Clostridium perfringens challenge conditions was also evaluated. The results revealed that the six B. velezensis strains differed in their probiotic properties, with strain CML532 exhibiting the highest bile salt and acid tolerance and high-yield enzyme and antibacterial activities. Genomic analyses showed that genes related to amino acid and carbohydrate metabolism, as well as genes related to starch and cellulose hydrolysis, were abundant in strain CML532. Dietary supplementation with strain CML532 promoted chicken growth, improved the gut barrier and absorption function, and modulated the gut microbiota. Under the C. perfringens challenge condition, strain CML532 alleviated intestinal damage, reduced ileal colonization of C. perfringens, and also improved chicken growth performance. Collectively, this study demonstrated that the newly isolated B. velezensis strain is a promising probiotic with beneficial effects on chicken growth performance and gut health.

2.
Sci Total Environ ; 912: 169057, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056640

RESUMO

Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial ß-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial ß-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.


Assuntos
Galinhas , Microbioma Gastrointestinal , Embrião de Galinha , Animais , Galinhas/microbiologia , Espermidina/farmacologia , Faecalibacterium , Antibacterianos/farmacologia
3.
J Dairy Sci ; 107(3): 1603-1619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37769949

RESUMO

Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1ß, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.


Assuntos
Escherichia coli , Interleucina-10 , Masculino , Animais , Bovinos , Lactoferrina/farmacologia , Endotelina-1 , Lipopolissacarídeos , Diarreia/prevenção & controle , Diarreia/veterinária , Suplementos Nutricionais , Ácido Láctico , Óxido Nítrico , Ração Animal , Dieta/veterinária , Desmame
4.
J Anim Sci Biotechnol ; 14(1): 96, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394467

RESUMO

BACKGROUND: Alginate oligosaccharide (AOS) holds great potential as a novel feed supplement in farm animals. However, the effects of AOS on chicken health and the underlying mechanisms are not fully understood. This study aimed to optimize the enzymatic preparation of AOS by using bacterial alginate lyases expressed in yeast, investigate the effects of the prepared AOS on the growth performance and gut health of broiler chickens, and reveal the underlying mechanisms. RESULTS: Five alginate lyases from bacteria were cloned into Pichia pastoris GS115 and the alginate lyase PDE9 was expressed at relatively high yield, activity and stability in P. pastoris. Animal trials were carried out using 320 1-day-old male Arbor Acres broilers (four groups; 8 replicates/group × 10 chicks/replicate) receiving either a basal diet or the same diet supplemented with 100, 200 and 400 mg/kg PDE9-prepared AOS for 42 d. The results showed that dietary supplementation of 200 mg/kg AOS displayed the highest activity in promoting the birds' ADG and ADFI (P < 0.05). AOS ameliorated the intestinal morphology, absorption function and barrier function, as indicated by the enhanced (P < 0.05) intestinal villus height, maltase activity, and the expression of PEPT, SGLT1, ZNT1, and occludin. AOS also increased serum insulin-like growth factor-1, ghrelin (P < 0.05), and growth hormone (P < 0.1). Moreover, the concentrations of acetate, isobutyrate, isovalerate, valerate, and total SCFAs in cecum of birds fed AOS were significantly higher than the control birds (P < 0.05). Metagenomic analysis indicated that AOS modulated the chicken gut microbiota structure, function, and microbial interactions and promoted the growth of SCFAs-producing bacteria, for example, Dorea sp. 002160985; SCFAs, especially acetate, were found positively correlated with the chicken growth performance and growth-related hormone signals (P < 0.05). We further verified that AOS can be utilized by Dorea sp. to grow and to produce acetate in vitro. CONCLUSIONS: We demonstrated that the enzymatically produced AOS effectively promoted broiler chicken growth performance by modulating the chicken gut microbiota structure and function. For the first time, we established the connections among AOS, chicken gut microbiota/SCFAs, growth hormone signals and chicken growth performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA