Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493940

RESUMO

The development of integrated co-production of multiple high-purity carotenoids from microalgal cells holds considerable significance for the valorization of microalgae. In this study, the economical microalga Nannochloropsis oceanica was identified as an accumulator of violaxanthin cycle carotenoids, including violaxanthin, antheraxanthin, and zeaxanthin. Notably, a novel and competent approach for the integrated co-production of violaxanthin cycle carotenoids was explored, encompassing four steps: microalgal cultivation, solvent extraction, octadecylsilyl open-column chromatography, and ethanol precipitation. Under optimal co-production conditions, the purities of the obtained violaxanthin, antheraxanthin, and zeaxanthin all exceeded 92%, with total recovery rates of approximately 51%, 40%, and 60%, respectively. Utilizing nuclear magnetic resonance techniques, the purified violaxanthin, antheraxanthin, and zeaxanthin were identified as all-trans-violaxanthin, all-trans-antheraxanthin, and all-trans-zeaxanthin, respectively. This method held significance for the multiproduct biorefinery of the microalga N. oceanica and carried potential future implications for the violaxanthin cycle carotenoids.


Assuntos
Carotenoides , Xantofilas , Zeaxantinas , Xantofilas/química
2.
Bioresour Technol ; 385: 129412, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390934

RESUMO

Integrated preparation of high-purity carotenoids from marine microalgae using green and efficient methods still faces enormous challenges. In this study, valorization of the economic Phaeodactylum tricornutum using integrated preparation of diadinoxanthin (Ddx) and fucoxanthin (Fx) was explored containing four steps including algae cultivation, solvent extraction, ODS open-column chromatography, and ethanol precipitation for the first time. Several essential key factors were optimized for simultaneously extracting Ddx and Fx from P. tricornutum. ODS open-column chromatography was used to isolate Ddx and Fx. Purification of Ddx and Fx was accomplished using ethanol precipitation. After optimization, the purity of Ddx and Fx was more than 95%, and the total recovery rates of Ddx and Fx were approximately 55% and 85%, respectively. The purified Ddx and Fx were identified as all-trans-diadinoxanthin and all-trans-fucoxanthin, respectively. The antioxidant capacity of the purified Ddx and Fx was assessed using two tests in vitro: DPPH and ABTS radical assays.


Assuntos
Diatomáceas , Diclorodifenil Dicloroetileno , Xantofilas/química , Etanol/química
3.
Mar Drugs ; 20(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36005513

RESUMO

The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a similar polarity in the microalgae biomass. In this study, a novel approach based on the sustainable-oriented strategy for fucoxanthin (FX) production was proposed, which consisted of four steps, including the culture of microalga, ethanol extraction, ODS column chromatography, and ethanol precipitation. The high-purity FX (around 95%) was efficiently obtained in a total recovery efficiency of 84.28 ± 2.56%. This study reveals that I. zhangjiangensis is a potentially promising feedstock for FX production and firstly provides a potentially eco-friendly method for the scale-up preparation of FX from the microalga I. zhangjiangensis.


Assuntos
Haptófitas , Microalgas , Biomassa , Cromatografia , Etanol , Haptófitas/química , Microalgas/química , Xantofilas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA