Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(4): 527-534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454027

RESUMO

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation-anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of ∼3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to ∼13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

2.
Nat Commun ; 14(1): 7428, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973881

RESUMO

Mg3(Sb,Bi)2 is a promising thermoelectric material suited for electronic cooling, but there is still room to optimize its low-temperature performance. This work realizes >200% enhancement in room-temperature zT by incorporating metallic inclusions (Nb or Ta) into the Mg3(Sb,Bi)2-based matrix. The electrical conductivity is boosted in the range of 300-450 K, whereas the corresponding Seebeck coefficients remain unchanged, leading to an exceptionally high room-temperature power factor >30 µW cm-1 K-2; such an unusual effect originates mainly from the modified interfacial barriers. The reduced interfacial barriers are conducive to carrier transport at low and high temperatures. Furthermore, benefiting from the reduced lattice thermal conductivity, a record-high average zT > 1.5 and a maximum zT of 2.04 at 798 K are achieved, resulting in a high thermoelectric conversion efficiency of 15%. This work demonstrates an efficient nanocomposite strategy to enhance the wide-temperature-range thermoelectric performance of n-type Mg3(Sb,Bi)2, broadening their potential for practical applications.

3.
Adv Mater ; 35(23): e2209119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929018

RESUMO

Mg3 (Sb,Bi)2 is a potential nearly-room temperature thermoelectric compound composed of earth-abundant elements. However, complex defect tuning and exceptional microstructural control are required. Prior studies have confirmed the detrimental effect of Mg vacancies (VMg ) in Mg3 (Sb,Bi)2 . This study proposes an approach to mitigating the negative scattering effect of VMg by Bi deficiency, synergistically modulating the electrical and thermal transport properties to enhance the thermoelectric performance. Positron annihilation spectrometry and Cs -corrected scanning transmission electron microscopy analyses indicated that the VMg tends to coalesce due to the introduced Bi vacancies (VBi ). The defects created by Bi deficiency effectively weaken the scattering of electrons from the intrinsic VMg and enhance phonon scattering. A peak zT of 1.82 at 773 K and high conversion efficiency of 11.3% at ∆T = 473 K are achieved in the optimized composition of Mg3 (Sb,Bi)2 by tuning the defect combination. This work demonstrates a feasible and effective approach to improving the performance of Mg3 (Sb,Bi)2 as an emerging thermoelectric material.

4.
Nat Commun ; 13(1): 6087, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241619

RESUMO

GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.

5.
Adv Mater ; 33(43): e2103633, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34494316

RESUMO

Pores in a solid can effectively reduce thermal conduction, but they are not favored in thermoelectric materials due to simultaneous deterioration of electrical conductivity. Conceivably, creating a porous structure may endow thermoelectric performance enhancement provided that overwhelming reduction of electrical conductivity can be suppressed. This work demonstrates such an example, in which a porous structure is formed leading to a significant enhancement in the thermoelectric figure of merit (zT). By a unique BiI3 sublimation technique, pore networks can be introduced into tetrahedrite Cu12 Sb4 S13 -based materials, accompanied by changes in their hierarchical structures. The addition of a small quantity of BiI3 (0.7 vol%) results in a ≈72% reduction in the lattice thermal conductivity, whereas the electrical conductivity is improved due to unexpected enhanced carrier mobility. As a result, an enhanced zT of 1.15 at 723 K in porous tetrahedrite and a high conversion efficiency of 6% at ΔT = 419 K in a fabricated segmented single-leg based on this porous material are achieved. This work offers an effective way to concurrently modulate the electrical and thermal properties during the synthesis of high-performance porous thermoelectric materials.

6.
ACS Appl Mater Interfaces ; 12(14): 16426-16435, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32223211

RESUMO

Bi2Te3-based compounds are the most mature and widely used thermoelectric materials. However, industrial device fabrication will inevitably produce a lot of Bi2Te3 scraps, which results in wastes of expensive material resources. In this work, we recycled p-type (Bi,Sb)2Te3 scraps and reprocessed them by making nanocomposites with nano-SiC. The thermoelectric performance was enhanced, and a high ZT value of 1.07 was achieved, which is a significant improvement compared with commercial p-type (Bi,Sb)2Te3 ingots. Also, the hardness showed a notable increase, which is beneficial for device fabrication. In addition, we adjusted the proportion of Bi/Te of the commercial p-type (Bi,Sb)2Te3 scraps, thereby improving the thermoelectric performance and obtaining a higher ZT value of 1.2.

7.
ACS Appl Mater Interfaces ; 12(15): 17852-17860, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32191022

RESUMO

Nanostructuring and defect engineering are increasingly employed as processing strategies for thermoelectric performance enhancement, and special attention has been paid to nanostructured interfaces and dislocations that can effectively scatter low- and mid-frequency phonons. This work demonstrated that their combination was realized in Fe2O3-dispersed tetrahedrite (Cu12Sb4S13) nanocomposites, leading to significantly reduced thermal conductivities around 0.9 W m-1 K-1 at all temperatures and hence a high ZT value of ∼1.0, which increases by ∼33% compared with that of the matrix. The plausible enhancement mechanisms have been analyzed with an emphasis on the incorporation of magnetic γ-Fe2O3 nanoparticles (NPs) into Cu11.5Ni0.5Sb4S13, leading to various nanostructures (NPs, nanoprecipitates, and nanotwins) and dislocations. A calculated efficiency of ∼9.3% and an average ZT of 0.63 also reveal the potential application of tetrahedrite at medium temperatures. Additionally, the mechanical properties are improved because of a second phase strengthening and nanotwin structures.

9.
Adv Mater ; : e1802016, 2018 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-29984538

RESUMO

Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl ) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid-fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2 Te3 alloys. A segmented leg of melt-centrifuged Bi0.5 Sb1.5 Te3 and Bi0.3 Sb1.7 Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323-523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high-efficiency porous thermoelectric materials through an unconventional melt-centrifugation technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA