Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Opt Lett ; 48(11): 2817-2820, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262218

RESUMO

Optical frequency domain polarimetry (OFDP) is an emerging distributed polarization crosstalk rapid measurement method with an ultrawide dynamic range. However, interferometric phase noise induced by the laser source and ambient noise results in a trade-off between measurement length and dynamic range. In this Letter, we solve this problem with a self-referenced unbalanced Mach-Zehnder interferometer. The features of long distance (9.8 km), ultrawide dynamic range (107.8 dB), short measurement time (2 sec), and signal-to-noise ratio improvement against ambient noise are experimentally demonstrated. The method makes it possible to evaluate a long polarization-maintaining fiber in an environment whose state changes rapidly.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36141924

RESUMO

Improving green total factor productivity (GTFP) is the inherent requirement for practicing the philosophy of green development and achieving regional high-quality development. Based on panel data for 68 prefectural-level-and-above cities in the Yellow River Basin of China from 2006 to 2019, we measured their GTFPs and degrees of productive-services agglomeration using the non-radial directional distance function and industrial agglomeration index formulas, respectively. Furthermore, we empirically investigated the interactive relationship between agglomeration of productive services, industrial-structure upgrading, and GTFP using the dual fixed-effects model, the mediating-effect model, and the moderating-effect model. The findings were as follows. (1) Both specialized and diversified agglomeration of productive services significantly improved the GTFPs of cities in the Yellow River Basin, and the promoting effect of specialized agglomeration was stronger than that of diversified agglomeration. (2) The diversified agglomeration of productive services (hereinafter referred to as diversified agglomeration) made a significant contribution to GTFP in all sample cities of the Yellow River Basin, while the specialized agglomeration of productive services (hereinafter referred to as specialized agglomeration) only significantly improved GTFP in the upstream cities and had no significant effect on the midstream and downstream cities. (3) When examined according to city size, specialized agglomeration was found to have a positive impact on the GTFPs of small and medium-sized cities in the Yellow River Basin but a non-significant negative impact on large cities, while the effect of diversified agglomeration on GTFP was found not to be significant. (4) Industrial-structure upgrading played partially mediating and negative moderating roles in the process of specialized agglomeration affecting the GTFPs of cities in the Yellow River Basin, but it did not become a mediating channel and moderating factor that influenced diversified agglomeration in relation to GTFP.


Assuntos
Indústrias , Rios , China , Cidades , Desenvolvimento Econômico
3.
Artigo em Inglês | MEDLINE | ID: mdl-35329326

RESUMO

How environmental regulation affects factor allocation is becoming an emerging hot topic in academia. In this paper, we construct a dynamic general equilibrium model accommodating environmental regulatory shock based on the H-K framework to explain the impact of environmental regulation on factor misallocation from the perspective of aggregate total factor productivity loss changes, and numerical simulation results are provided for several representative scenarios. The results show that environmental regulation has a significant effect on factor market misallocation, but this effect is not simply positive or negative, and it mainly depends on the firms' initial factor allocation status and the intensity of the shock. Reducing the intensity of environmental regulation for firms that face stronger distortion helps mitigate factor misallocation and, on the contrary, the same policy could exacerbate factor market misallocation. Under the environmental regulatory shock condition, firms' overhead labor input has a moderating effect on the factor allocation mitigation of environmental regulation. Distorted firms' higher overhead labor share inhibits the correction of factor misallocation by environmental regulation. And reducing firms' overhead labor share amplifies the correcting effect of environmental regulation on factor misallocation.


Assuntos
Eficiência , Políticas , Simulação por Computador
4.
Sci Adv ; 7(50): eabl5182, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878835

RESUMO

Dysregulated mitochondrial function is a hallmark of immune-mediated inflammatory diseases. Cytochrome c oxidase (CcO), which mediates the rate-limiting step in mitochondrial respiration, is remodeled during development and in response to changes of oxygen availability, but there has been little study of CcO remodeling during inflammation. Here, we describe an elegant molecular switch mediated by the bifunctional transcript C15orf48, which orchestrates the substitution of the CcO subunit NDUFA4 by its paralog C15ORF48 in primary macrophages. Expression of C15orf48 is a conserved response to inflammatory signals and occurs in many immune-related pathologies. In rheumatoid arthritis, C15orf48 mRNA is elevated in peripheral monocytes and proinflammatory synovial tissue macrophages, and its expression positively correlates with disease severity and declines in remission. C15orf48 is also expressed by pathogenic macrophages in severe coronavirus disease 2019 (COVID-19). Study of a rare metabolic disease syndrome provides evidence that loss of the NDUFA4 subunit supports proinflammatory macrophage functions.

5.
Cell Mol Life Sci ; 78(23): 7219-7235, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34664086

RESUMO

GTPases are a large superfamily of evolutionarily conserved proteins involved in a variety of fundamental cellular processes. The developmentally regulated GTP-binding protein (DRG) subfamily of GTPases consists of two highly conserved paralogs, DRG1 and DRG2, both of which have been implicated in the regulation of cell proliferation, translation and microtubules. Furthermore, DRG1 and 2 proteins both have a conserved binding partner, DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively, that prevents them from being degraded. Similar to DRGs, the DFRP proteins have also been studied in the context of cell growth control and translation. Despite these proteins having been implicated in several fundamental cellular processes they remain relatively poorly characterized, however. In this review, we provide an overview of the structural biology and biochemistry of DRG GTPases and discuss current understanding of DRGs and DFRPs in normal physiology, as well as their emerging roles in diseases such as cancer.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Neoplasias/patologia , Animais , Proteínas de Ligação ao GTP/genética , Humanos , Microtúbulos/metabolismo , Biossíntese de Proteínas/fisiologia , Domínios Proteicos/fisiologia , Proteínas de Ligação a RNA/metabolismo
6.
Nat Chem Biol ; 14(10): 988, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29950663

RESUMO

In the version of this article initially published, authors Sarah E. Wilkins, Charlotte D. Eaton, Martine I. Abboud and Maximiliano J. Katz were incorrectly included in the equal contributions footnote in the affiliations list. Footnote number seven linking to the equal contributions statement should be present only for Suzana Markolovic and Qinqin Zhuang, and the statement should read "These authors contributed equally: Suzana Markolovic, Qinqin Zhuang." The error has been corrected in the HTML and PDF versions of the article.

7.
Nat Chem Biol ; 14(7): 688-695, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915238

RESUMO

Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.


Assuntos
Biocatálise , GTP Fosfo-Hidrolases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , GTP Fosfo-Hidrolases/química , Humanos , Hidroxilação , Histona Desmetilases com o Domínio Jumonji/química , Modelos Moleculares
8.
Translation (Austin) ; 3(1): e1009331, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779412

RESUMO

The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of 'translational modifications' is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes.

9.
Anal Biochem ; 447: 98-106, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239809

RESUMO

An effective and flexible method is presented that can be used to investigate cofractionation of groups of nuclear proteins. The method was used to analyze chromatin-related proteins, of which high-mobility group B (HMGB) proteins consistently cofractionated by cation-exchange chromatography with the histone dimer (H2A-H2B). This led to the hypothesis that the two form a complex, further suggested by gel filtration, in which the HMGBs with core histones eluted as a defined high-molecular-weight peak. A necessary requirement for further studying protein interactions is that the constituents are of the highest possible purity and the pure histone dimers and tetramers used in this study were derived from pure histone octamers with their native marks. There is a growing interest in protein-protein interactions and an increasing focus on protein-interaction domains: most frequently, pull-down assays are used to examine these. The technology presented here can provide an effective system that complements pull-down assays.


Assuntos
Fracionamento Químico/métodos , Proteínas HMGB/isolamento & purificação , Histonas/química , Histonas/isolamento & purificação , Multimerização Proteica , Animais , Núcleo Celular/química , Galinhas , Cromatografia por Troca Iônica , Eritrócitos/citologia , Estrutura Quaternária de Proteína
10.
J Phys Chem A ; 114(34): 9028-33, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20698711

RESUMO

We studied growth kinetic processes of AlN molecules on the Al-polar surface of AlN using ab initio and Monte Carlo simulations. Molecular processes were presented and analyzed during the nucleation, ripening, and coalescence stages. The results show that the nucleus number decreases as temperature rises due to the increasing diffusion of the molecules. By analyzing the growth time dependence of average cluster size, interface-limited Ostwald ripening is found to be the main ripening mechanism when the temperature is lower than 1773 K. As cluster-corner crossing diffusion is limited, the growth is fractal-like extension, and the coalescence is achieved through adhesion of clusters, leading to a generally continuous morphology with some vacancies and closure failures, which is in good agreement with our experimental results. Moreover, coverage/temperature kinetic phase diagrams under different deposition rates are presented (from 0.025 to 0.1 ML/s). Our finding suggests that a temperature higher than 1800 K is crucial for growth of an ideal atomic-scale Al-polar AlN surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA