Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 19(6): e2400140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896410

RESUMO

Artificial Intelligence (AI) technology is spearheading a new industrial revolution, which provides ample opportunities for the transformational development of traditional fermentation processes. During plasmid fermentation, traditional subjective process control leads to highly unstable plasmid yields. In this study, a multi-parameter correlation analysis was first performed to discover a dynamic metabolic balance among the oxygen uptake rate, temperature, and plasmid yield, whilst revealing the heating rate and timing as the most important optimization factor for balanced cell growth and plasmid production. Then, based on the acquired on-line parameters as well as outputs of kinetic models constructed for describing process dynamics of biomass concentration, plasmid yield, and substrate concentration, a machine learning (ML) model with Random Forest (RF) as the best machine learning algorithm was established to predict the optimal heating strategy. Finally, the highest plasmid yield and specific productivity of 1167.74 mg L-1 and 8.87 mg L-1/OD600 were achieved with the optimal heating strategy predicted by the RF model in the 50 L bioreactor, respectively, which was 71% and 21% higher than those obtained in the control cultures where a traditional one-step temperature upshift strategy was applied. In addition, this study transformed empirical fermentation process optimization into a more efficient and rational self-optimization method. The methodology employed in this study is equally applicable to predict the regulation of process dynamics for other products, thereby facilitating the potential for furthering the intelligent automation of fermentation processes.


Assuntos
Reatores Biológicos , Escherichia coli , Fermentação , Aprendizado de Máquina , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Técnicas de Cultura Celular por Lotes/métodos , Biomassa
2.
Biodes Res ; 6: 0038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919710

RESUMO

Recently, there has been increasing interest in the use of bacteria for cancer therapy due to their ability to selectively target tumor sites and inhibit tumor growth. However, the complexity of the interaction between bacteria and tumor cells evokes unpredictable therapeutic risk, which induces inflammation, stimulates the up-regulation of cyclooxygenase II (COX-2) protein, and stimulates downstream antiapoptotic gene expression in the tumor microenvironment to reduce the antitumor efficacy of chemotherapy and immunotherapy. In this study, we encapsulated celecoxib (CXB), a specific COX-2 inhibitor, in liposomes anchored to the surface of Escherichia coli Nissle 1917 (ECN) through electrostatic absorption (C@ECN) to suppress ECN-induced COX-2 up-regulation and enhance the synergistic antitumor effect of doxorubicin (DOX). C@ECN improved the antitumor effect of DOX by restraining COX-2 expression. In addition, local T lymphocyte infiltration was induced by the ECN to enhance immunotherapy efficacy in the tumor microenvironment. Considering the biosafety of C@ECN, a hypoxia-induced lysis circuit, pGEX-Pvhb-Lysis, was introduced into the ECN to limit the number of ECNs in vivo. Our results indicate that this system has the potential to enhance the synergistic effect of ECN with chemical drugs to inhibit tumor progression in medical oncology.

3.
Nat Chem Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783134

RESUMO

Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.

4.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581087

RESUMO

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Assuntos
Álcool Feniletílico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Álcool Feniletílico/metabolismo , Multiômica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação
5.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473957

RESUMO

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Assuntos
Acetatos , Carthamus tinctorius , Ciclopentanos , Oxilipinas , Transferases , Transferases/metabolismo , Ácido Clorogênico/metabolismo , Carthamus tinctorius/genética , Simulação de Acoplamento Molecular , Transcriptoma , Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Bioresour Technol ; 395: 130354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272147

RESUMO

The influence of extracellular variations on the cellular metabolism and thereby the process performance at large-scale can be evaluated using the so-called scale-down simulators. Nevertheless, the major challenge is to design an appropriate scale-down simulator, which can accurately mimic the cell lifelines that record the flow paths and experiences of cells circulating in large-scale bioreactors. To address this, a dedicated SDSA (scale-down simulator application) was purposedly developed on the basis of black box model and process reaction model established for Penicillium chrysogenum strain as well as cell lifelines or trajectories information in an industrial-scale fermentor. Guided by the SDSA, the industrial-relevant metabolic regimes for substrate availability, i.e., excess, limitation and starvation, were successfully reproduced at laboratory-scale three-compartment scale-down (SD) system. In addition, such SDSA can also display individual process dynamics in each compartment, and demonstrate how individual factors influence the entire bioprocess performance, thus serving both educational and research purposes.


Assuntos
Reatores Biológicos , Penicillium chrysogenum , Penicillium chrysogenum/metabolismo
8.
J Hazard Mater ; 465: 133119, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134689

RESUMO

The simultaneous sensing and remediation of multiple heavy metal ions in wastewater or soil with microorganisms is currently a significant challenge. In this study, the microorganism Bacillus subtilis was used as a chassis organism to construct two genetic circuits for sensing and adsorbing heavy-metal ions. The engineered biosensor can sense three heavy metal ions (0.1-75 µM of Pb2+ and Cu2+, 0.01-3.5 µM of Hg2+) in situ real-time with high sensitivity. The engineered B. subtilis TasA-metallothionein (TasA-MT) biofilm can specifically adsorb metal ions from the environment, exhibiting remarkable removal efficiencies of 99.5% for Pb2+, 99.9% for Hg2+and 99.5% for Cu2+ in water. Furthermore, this engineered strain (as a biosensor and absorber of Pb2+, Cu2+, and Hg2+) was incubated with biochar to form a hybrid biofilm@biochar (BBC) material that could be applied in the bioremediation of heavy metal ions. The results showed that BBC material not only significantly reduced exchangeable Pb2+ in the soil but also reduced Pb2+ accumulation in maize plants. In addition, it enhanced maize growth and biomass. In conclusion, this study examined the potential applications of biosensors and hybrid living materials constructed using sensing and adsorption circuits in B. subtilis, providing rapid and cost-effective tools for sensing and remediating multiple heavy metal ions (Pb2+, Hg2+, and Cu2+).


Assuntos
Carvão Vegetal , Mercúrio , Metais Pesados , Poluentes do Solo , Bacillus subtilis , Biodegradação Ambiental , Chumbo , Metais Pesados/análise , Íons , Solo , Poluentes do Solo/análise
9.
Bioresour Bioprocess ; 10(1): 60, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38647813

RESUMO

Infectious bursal disease (IBD) of chickens is an acute, high-contact, lytic infectious disease caused by infectious bursal disease virus (IBDV). The attenuated inactivated vaccine produced by DF-1 cells is an effective control method, but the epidemic protection demands from the world poultry industry remain unfulfilled. To improve the IBDV vaccine production capacity and reduce the economic losses caused by IBDV in chicken, cellular metabolic engineering is performed on host cells. In this study, when analyzing the metabolomic after IBDV infection of DF-1 cells and the exogenous addition of reduced glutathione (GSH), we found that glutathione metabolism had an important role in the propagation of IBDV in DF-1 cells, and the glutathione synthetase gene (gss) could be a limiting regulator in glutathione metabolism. Therefore, three stable recombinant cell lines GSS-L, GSS-M, and GSS-H (gss gene overexpression with low, medium, and high mRNA levels) were screened. We found that the recombinant GSS-M cell line had the optimal regulatory effect with a 7.19 ± 0.93-fold increase in IBDV titer. We performed oxidative stress and redox status analysis on different recombinant cell lines, and found that the overexpression of gss gene significantly enhanced the ability of host cells to resist oxidative stress caused by IBDV infection. This study established a high-efficiency DF-1 cells system for IBDV vaccine production by regulating glutathione metabolism, and underscored the importance of moderate gene expression regulation on the virus reproduction providing a way for rational and precise cell engineering.

10.
Bioresour Bioprocess ; 8(1): 37, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38650202

RESUMO

In this study, introduction of a viable cell sensor and electronic nose into ethanol fermentation was investigated, which could be used in real-time and on-line monitoring of the amount of living cells and product content, respectively. Compared to the conventional off-line biomass determination, the capacitance value exhibited a completely consistent trend with colony forming units, indicating that the capacitance value could reflect the living cells in the fermentation broth. On the other hand, in comparison to the results of off-line determination by high-performance liquid chromatography, the ethanol concentration measured by electronic nose presented an excellent consistency, so as to realize the on-line monitoring during the whole process. On this basis, a dynamic feeding strategy of glucose guided by the changes of living cells and ethanol content was developed. And consequently, the ethanol concentration, productivity and yield were enhanced by 15.4%, 15.9% and 9.0%, respectively. The advanced sensors adopted herein to monitor the key parameters of ethanol fermentation process could be readily extended to an industrial scale and other similar fermentation processes.

11.
Bioresour Bioprocess ; 8(1): 74, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38650273

RESUMO

The scale-up of animal cell cultivation is important but remains complex and challenging. In the present study, we propose a novel scale-up strategy for baby hamster Syrian kidney-21 (BHK-21) cell cultivation based on similar hydrodynamic environments. The hydrodynamic characteristics of the different scale bioreactors were determined by computational fluid dynamics (CFD) and further correlated with the agitation speed. The optimal hydrodynamic environment for cell cultivation and vaccine production was determined from the cultivation experiments of BHK-21 cells in 5-L laboratory-scale bioreactors equipped with different impellers at various agitation speeds. BHK-21 cell cultivation was scaled up from 5-L to 42-, 350-, and 1000-L bioreactors by adjusting the agitation speed to make the hydrodynamic features similar to those in the 5-L bioreactor, especially for the shear rate in the impeller zone (γimp) and energy dissipation rate in the tank bulk zone (εtan). The maximum cell density and cell aggregation rate in these scaled-up bioreactors were in the range of 4.6 × 106 ~ 4.8 × 106 cells/mL and 16 ~ 20%, which are comparable to or even better than those observed in the 5-L bioreactor (maximum cell density 4.8 × 106 cells/mL, cell aggregation rate 21%). The maximum virus titer of 108.0 LD50/mL achieved in the 1000-L bioreactor was close to 108.3 LD50/mL that obtained in the 5-L bioreactor. Hence, the scale-up strategy proposed in this study is feasible and can efficiently facilitate the scale-up processes of animal cell cultivation.

12.
Bioresour Bioprocess ; 8(1): 135, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650282

RESUMO

Cervical cancer is a serious health problem in women around the globe. However, the use of clinical drug is seriously dampened by the development of drug resistance. Efficient in vitro tumor model is essential to improve the efficiency of drug screening and the accuracy of clinical application. Multicellular tumor spheroids (MTSs) can in a way recapitulates tumor traits in vivo, thereby representing a powerful transitional model between 2D monolayer culture and xenograft. In this study, based on the liquid overlay method, a protocol for rapid generation of the MTSs with uniform size and high reproducibility in a high-throughput manner was established. As expected, the cytotoxicity results showed that there was enhanced 5-fluorouracil (5-FU) resistance of HeLa carcinoma cells in 3D MTSs than 2D monolayer culture with a resistance index of 5.72. In order to obtain a holistic view of the molecular mechanisms that drive 5-FU resistance in 3D HeLa carcinoma cells, a multi-omics study was applied to discover hidden biological regularities. It was observed that in the 3D MTSs mitochondrial function-related proteins and the metabolites of the tricarboxylic acid cycle (TCA cycle) were significantly decreased, and the cellular metabolism was shifted towards glycolysis. The differences in the protein synthesis, processing, and transportation between 2D monolayer cultures and 3D MTSs were significant, mainly in the heat shock protein family, with the up-regulation of protein folding function in endoplasmic reticulum (ER), which promoted the maintenance of ER homeostasis in the 3D MTSs. In addition, at the transcript and protein level, the expression of extracellular matrix (ECM) proteins (e.g., laminin and collagen) were up-regulated in the 3D MTSs, which enhanced the physical barrier of drug penetration. Summarizing, this study formulates a rapid, scalable and reproducible in vitro model of 3D MTS for drug screening purposes, and the findings establish a critical role of glycolytic metabolism, ER hemostasis and ECM proteins expression profiling in tumor chemoresistance of HeLa carcinoma cells towards 5-FU.

13.
Braz. j. microbiol ; 40(4): 734-746, Oct.-Dec. 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-528155

RESUMO

Bitespiramycin, a group of 4"-O-acylated spiramycins with 4"-O-isovalerylspiramycins as the major components, was produced by recombinantspiramycin-producing strain Streptomyces spiramyceticus harboring a 4"-O-acyltransferase gene. The experiment was initially performed in synthetic medium with 0.5 g l-1 Valine, Isoleucine or Leucine feeding at 36 h cultivation. When valine was fed, the biological titer of bitespiramycin was 45.3 percent higher than that of the control group, but the relative content of total isovalerylspiramycin components decreased by 22.5 percent. In the case of ilecine, the biological titer of bitespiramycin and the total isovalerylspiramycins alone were 85 percent and 72.1 percent of the control group, respectively. In contrast, the relative content of other acylated spiramycins increased by 54.41 percent. However, leucine feeding increased the relative content of total isovalerylspiramycins by 41.9 percent while the biological titer of bitespiramycin was nearly equal to that of the control group. The improvement effect of leucine on the biosynthesis of isovalerylspiramycins was further confirmed by feeding of 2.0 g l-1 leucine to the culture with complex medium. After batch feeding with a total amount of 2.0 g l-1 leucine to the culture from 70 h to 90 h, the biological titer of bitespiramycin was almost unreduced, and the final relative content of total isovalerylspiramycins increased from 31.1 percent to 46.9 percent.


Assuntos
Aminoácidos/análise , Aminoácidos/biossíntese , Espiramicina/análise , Espiramicina/biossíntese , Leucina/análise , Leucina/biossíntese , Biossíntese de Proteínas , Métodos , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA