Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958595

RESUMO

Cherries (Prunus Subgenus Cerasus) have economic value and ecological significance, yet their phylogeny, geographic origin, timing, and dispersal patterns remain challenging to understand. To fill this gap, we conducted a comprehensive analysis of the complete chloroplast genomes of 54 subg. Cerasus individuals, along with 36 additional genomes from the NCBI database, resulting in a total of 90 genomes for comparative analysis. The chloroplast genomes of subg. Cerasus exhibited varying sizes and consisted of 129 genes, including protein-coding, transfer RNA, and ribosomIal RNA genes. Genomic variation was investigated through InDels and SNPs, showcasing distribution patterns and impact levels. A comparative analysis of chloroplast genome boundaries highlighted variations in inverted repeat (IR) regions among Cerasus and other Prunus species. Phylogeny based on whole-chloroplast genome sequences supported the division of Prunus into three subgenera, I subg. Padus, II subg. Prunus and III subg. Cerasus. The subg. Cerasus was subdivided into seven lineages (IIIa to IIIg), which matched roughly to taxonomic sections. The subg. Padus first diverged 51.42 Mya, followed by the separation of subg. Cerasus from subg. Prunus 39.27 Mya. The subg. Cerasus started diversification at 15.01 Mya, coinciding with geological and climatic changes, including the uplift of the Qinghai-Tibet Plateau and global cooling. The Himalayans were the refuge of cherries, from which a few species reached Europe through westward migration and another species reached North America through northeastward migration. The mainstage of cherry evolution was on the Qing-Tibet Plateau and later East China and Japan as well. These findings strengthen our understanding of the evolution of cherry and provide valuable insights into the conservation and sustainable utilization of cherry's genetic resources.


Assuntos
Genoma de Cloroplastos , Prunus avium , Prunus , Humanos , Prunus avium/genética , Filogenia , Prunus/genética , Tibet
2.
ACS Appl Mater Interfaces ; 14(41): 46866-46875, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194768

RESUMO

Neuromorphic computing, which mimics brain function, can address the shortcomings of the "von Neumann" system and is one of the critical components of next-generation computing. The use of light to stimulate artificial synapses has the advantages of low power consumption, low latency, and high stability. We demonstrate amorphous InAlZnO-based light-stimulated artificial synaptic devices with a thin-film transistor structure. The devices exhibit fundamental synaptic properties, including excitatory postsynaptic current, paired-pulse facilitation (PPF), and short-term plasticity to long-term plasticity conversion under light stimulation. The PPF index stimulated by 375 nm light is 155.9% when the time interval is 0.1 s. The energy consumption of each synaptic event is 2.3 pJ, much lower than that of ordinary MOS devices and other optical-controlled synaptic devices. The relaxation time constant reaches 277 s after only 10 light spikes, which shows the great synaptic plasticity of the device. In addition, we simulated the learning-forgetting-relearning-forgetting behavior and learning efficiency of human beings under different moods by changing the gate voltage. This work is expected to promote the development of high-performance optoelectronic synaptic devices for neuromorphic computing.


Assuntos
Plasticidade Neuronal , Sinapses , Humanos , Sinapses/química , Aprendizagem , Potenciais Pós-Sinápticos Excitadores
3.
Front Neurosci ; 15: 717947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421528

RESUMO

In recent decades, artificial intelligence has been successively employed in the fields of finance, commerce, and other industries. However, imitating high-level brain functions, such as imagination and inference, pose several challenges as they are relevant to a particular type of noise in a biological neuron network. Probabilistic computing algorithms based on restricted Boltzmann machine and Bayesian inference that use silicon electronics have progressed significantly in terms of mimicking probabilistic inference. However, the quasi-random noise generated from additional circuits or algorithms presents a major challenge for silicon electronics to realize the true stochasticity of biological neuron systems. Artificial neurons based on emerging devices, such as memristors and ferroelectric field-effect transistors with inherent stochasticity can produce uncertain non-linear output spikes, which may be the key to make machine learning closer to the human brain. In this article, we present a comprehensive review of the recent advances in the emerging stochastic artificial neurons (SANs) in terms of probabilistic computing. We briefly introduce the biological neurons, neuron models, and silicon neurons before presenting the detailed working mechanisms of various SANs. Finally, the merits and demerits of silicon-based and emerging neurons are discussed, and the outlook for SANs is presented.

4.
Sci Technol Adv Mater ; 22(1): 326-344, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34025215

RESUMO

The state-of-the-art artificial intelligence technologies mainly rely on deep learning algorithms based on conventional computers with classical von Neumann computing architectures, where the memory and processing units are separated resulting in an enormous amount of energy and time consumed in the data transfer process. Inspired by the human brain acting like an ultra-highly efficient biological computer, neuromorphic computing is proposed as a technology for hardware implementation of artificial intelligence. Artificial synapses are the main component of a neuromorphic computing architecture. Memristors are considered to be a relatively ideal candidate for artificial synapse applications due to their high scalability and low power consumption. Oxides are most widely used in memristors due to the ease of fabrication and high compatibility with complementary metal-oxide-semiconductor processes. However, oxide memristors suffer from unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve the device stability and reliability, therefore providing a promising prospect for the application of oxide memristors to neuromorphic computing. This work reviews the recent advances in the development of hybrid oxide memristive synapses. The discussion is organized according to the blending schemes as well as the working mechanisms of hybrid oxide memristors.

5.
Opt Lett ; 44(12): 2970-2973, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199358

RESUMO

Nanowire-based hyperbolic metamaterials (HMMs) with rich optical dispersion engineering capabilities are promising for use in miniaturization devices, such as nanophotonic chips and circuits. Herein, based on a one-step and template-free sputtering method, we are capable of precisely tuning the microstructural parameters of Ag nanowires (with a diameter <10 nm) in silica matrix, offering plenty of opportunities to perform hyperbolic dispersion engineering. Thus, the effective plasma frequency of the designed HMMs was shifted into the near-ultraviolet region (∼350 nm), leading to a broadband hyperbolic dispersion feature covering the whole visible-light region. This demonstration could pave the way for the development of metamaterial-based flat lenses, deep-subwavelength waveguiding, and broadband perfect absorbers and sensing, etc.

6.
Inorg Chem ; 58(3): 2089-2098, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30644308

RESUMO

The nanocrystal-in-glass (nanocrystals embedded amorphous matrix) tungsten oxide (WO3) thin films with a nanoporous characteristic were prepared via an electron beam evaporation technique. The e-beam evaporated WO3 thin films present a fast colored/bleached time of 16/11, 16/14, and 12/12 s, a large optical modulation of 92, 91, and 87% at 633 nm, and a high coloration efficiency of 61.78, 62.04, and 67.59 cm2 C-1 in Li+, Na+, and Al3+ electrolytes, respectively. On one hand, the improved electrochromic performance is mainly attributed to the short diffusion distance and buffering effect in the host matrix, which facilitates the ion insertion/extraction and alleviates the structural collapse of the framework. On the other, owing to the strong electrostatic interactions between the trivalent cations and the host, the WO3 thin films in Al3+ possess a shallow diffusion depth and long cycle life. The individual contribution from the capacitance- or diffusion-controlled process is comprehensively demonstrated. Pseudocapacitive behavior in the nanocrystal-in-glass WO3 thin films is in favor of fast kinetics response and sound cycling stability. Our work offers an in-depth insight of the electrochromic mechanism for nanocrystal-in-glass WO3 thin films in various electrolytes and sheds light on the fundamental principle in the electrochromic devices.

7.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28397309

RESUMO

For biological synapses, high sensitivity is crucial for transmitting information quickly and accurately. Compared to biological synapses, memristive ones show a much lower sensitivity to electrical stimuli since much higher voltages are needed to induce synaptic plasticity. Yet, little attention has been paid to enhancing the sensitivity of synaptic devices. Here, electrochemical metallization memory cells based on lightly oxidized ZnS films are found to show highly controllable memristive switching with an ultralow SET voltage of several millivolts, which likely originates from a two-layer structure of ZnS films, i.e., the lightly oxidized and unoxidized layers, where the filament rupture/rejuvenation is confined to the two-layer interface region several nanometers in thickness due to different ion transport rates in these two layers. Based on such devices, an ultrasensitive memristive synapse is realized where the synaptic functions of both short-term plasticity and long-term potentiation are emulated by applying electrical stimuli several millivolts in amplitude, whose sensitivity greatly surpasses that of biological synapses. The dynamic processes of memorizing and forgetting are mimicked through a 5 × 5 memristive synapse array. In addition, the ultralow operating voltage provides another effective solution to the relatively high energy consumption of synaptic devices besides reducing the operating current and pulse width.

8.
Adv Mater ; 29(16)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218442

RESUMO

Currently, the limitations of conventional methods for fabricating metamaterials composed of well-aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large-area synthesis. In this Communication, the authors propose a fabrication route to create well-ordered silver nano forest/ceramic composite single-layer or multi-layer vertically stacked structures, as a distinctive approach to make large-area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single-layer nanocomposite films with a well-defined sub-5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single-layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self-organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub-5 nm scale.

9.
Springerplus ; 5(1): 1799, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812441

RESUMO

By using shoot tips as explants, various media and culture conditions for callus induction and proliferation, shoot differentiation, root induction and plantlet transplantation to develop an efficient and reliable regeneration system with Dendrocalamus hamiltonii were tested. Murashige and Skoog (MS) medium supplemented with 3 mg/l 2, 4-dichlorophenoxyacetic acid, 1 mg/l benzyladenine (BA), 500 mg/l glutamine, 500 mg/l proline, and 500 mg/l casein hydrolysate yielded the best rates of callus induction and granular-compact callus induction. MS medium supplemented with 1 mg/l BA, 0.3 mg/l kinetin and 0.3 mg/l naphthaleneacetic acid conferred the highest differentiation rate of calli. The maximum rooting rate was obtained in 1/2 MS medium supplemented with 3 mg/l indole-3-butyric acid, and the roots were long and thick. All hardened plantlets survived after transfer to an equal ratio mixture of peat, vermiculite and perlite. The regeneration system of D. hamiltonii developed is efficient and provides a useful tool for genetic transformation in bamboo species.

10.
ACS Appl Mater Interfaces ; 6(14): 11550-7, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24980213

RESUMO

In this article, we demonstrate that the Al-alloyed Ag nanoparticle-embedded alumina nanocermet films lead to excellent thermal stability, even at 500 °C for 130 h under an ambient nitrogen atmosphere. The outward diffusion of Al atoms from the AgAl bimetallic alloy nanoparticles and their easy oxidation create an armor layer to suppress the mobility of Ag atoms. Then, the AlAg particles or/and agglomerates with a uniform spherical shape favor higher dispersion concentration within the host matrix, which is beneficial both for high absorptance in the visible range and for the solid localized surface plasmon absorption features in the AgAl-Al2O3 nanocermet films. Based on the AgAl-Al2O3 absorbing layer with sound optical and microstructural stability, we successfully constructed a high-temperature-endurable solar selective absorber. The multilayer stacked absorber demonstrates a high solar absorptance of ∼94.2% and a low thermal emittance of ∼15% (@ 673 K) after annealing at 450 °C for 70 h in an ambient nitrogen atmosphere.

11.
ACS Appl Mater Interfaces ; 6(4): 2255-61, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24490685

RESUMO

High dielectric constant (high-k) Al2O3 thin films were prepared on ITO glasses by reactive RF-magnetron sputtering at room temperature. The effect of substrate bias on the subband structural, morphological, electrode/Al2O3 interfacial and electrical properties of the Al2O3 films is systematically investigated. An optical method based on spectroscopic ellipsometry measurement and modeling is adopted to probe the subband electronic structure, which facilitates us to vividly understand the band-tail and deep-level (4.8-5.0 eV above the valence band maximum) trap states. Well-selected substrate biases can suppress both the trap states due to promoted migration of sputtered particles, which optimizes the leakage current density, breakdown strength, and quadratic voltage coefficient of capacitance. Moreover, high porosity in the unbiased Al2O3 film is considered to induce the absorption of atmospheric moisture and the consequent occurrence of electrolysis reactions at electrode/Al2O3 interface, as a result ruining the electrical properties.

12.
ACS Appl Mater Interfaces ; 4(10): 5673-7, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23025234

RESUMO

In this paper, SnO(x) films were produced by reactive radio frequency magnetron sputtering under various oxygen partial pressure (P(O)) in conjunction with a thermal annealing at 200 °C afterwards. The obtained SnO(x) films were systematically studied by means of various techniques, including X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and Hall-effect measurement. The structural, chemical, and electrical evolution of the SnO(x) films was found to experience three stages: polycrystalline SnO phase dominated section with p-type conduction at P(O) ≤ 9.9%; amorphous SnO(2) phase dominated area at P(O) ≥ 12.3%, exhibiting n-type characteristics; and conductivity dilemma area in between the above mentioned sections, featuring the coexistence of SnO and SnO(2) phases with compatible and opposite contribution to the conductivity. The polycrystalline to amorphous film structure transition was ascribed to the enhanced crystallization temperature due to the perturbed structural disorder by incorporating Sn(4+) into the SnO matrix. The inversion from p-type to n-type conduction with P(O) variation is believed to result from the competition between the donor and acceptor generation process, i.e., the n-type behavior would be present if the donor effect is overwhelming, and vice versa. In addition, with increasing P(O), the refractive index decreased from 3.0 to 1.8 and the band gaps increased from 1.5 to 3.5 eV, respectively.

13.
Nanotechnology ; 22(27): 275204, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21613680

RESUMO

We report an improvement in minimizing the dispersion of resistive switching (RS) parameters such as ON/OFF state resistances and switching voltages of Cu/ZnO/Pt structures in which ZnO films have been deposited at elevated temperature with N doping. This deposition process can enlarge the ZnO grain size and lessen grain boundaries while maintaining a high initial resistance since ZnO naturally shows n-type conductivity and N is a p-type dopant but with a low solubility. Cu filaments with a diameter of 15 nm are found to form at the ZnO grain boundaries. Therefore, fewer grain boundaries could depress the randomicity of the formation/rupture of Cu filaments and result in more stable RS performances. Such memory devices show a fast programming speed of 10 ns.

14.
Nanotechnology ; 22(19): 195201, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21430327

RESUMO

We investigated capacitors based on polycrystalline narrow-band-gap BiFeO(3) (BFO) thin films with different top electrodes. The photovoltaic response for the capacitor with a Sn-doped In(2)O(3) (ITO) top electrode is about 25 times higher than that with a Au top electrode, which indicates that the electrode plays a key role in determining the photovoltaic response of ferroelectric thin film capacitors, as simulated by Qin et al (2009 Appl. Phys. Lett. 95 22912). The light-to-electricity photovoltaic efficiency for the ITO/polycrystalline BFO/Pt capacitor can reach 0.125%. Furthermore, under incident light of 450 µW cm(-2) and zero bias, the corresponding photocurrent varies from 0.2 to 200 pA, that is, almost a 1000-fold photoconductivity enhancement. Our experiments suggest that polycrystalline BFO films are promising materials for application in photo-sensitive and energy-related devices.

15.
Nanotechnology ; 21(42): 425202, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20858929

RESUMO

The resistive switching (RS) characteristics of a Bi(0.95)La(0.05)FeO(3) (La-BFO) film sandwiched between a Pt bottom electrode and top electrodes (TEs) made of Al, Ag, Cu, and Au have been studied. Devices with TEs made of Ag and Cu showed stable bipolar RS behaviors, whereas those with TEs made of Al and Au exhibited unstable bipolar RS. The Ag/La-BFO/Pt structure showed an on/off ratio of 10(2), a retention time > 10(5) s, and programming voltages < 1 V. The RS effect can be attributed to the formation/rupture of nanoscale metal filaments due to the diffusion of the TEs under a bias voltage. The maximum current before the reset process (on-to-off switching) was found to increase linearly with the current compliance applied during the set process (off-to-on switching).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA