Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Prenat Diagn ; 44(2): 167-171, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37749763

RESUMO

OBJECTIVE: To elucidate an etiology in a case with persistent oligohydramnios by prenatal diagnosis and actively treat the case to achieve good prognosis. METHODS: We performed whole exome sequencing (WES) of DNA from the fetus and parents. Serial amnioinfusions were conducted until birth. Pressors were required to maintain normal blood pressure. The infant angiotensin-converting enzyme (ACE) activity, angiotensin II (Ang II, a downstream product of ACE), and compensatory enzymes (CEs) activities were measured. Compensatory enzyme activities in plasma from age-matched healthy controls were also detected. RESULTS: We identified a fetus with a severe ACE mutation prenatally. The infant was born prematurely without pulmonary dysplasia. Hypotension and anuria resolved spontaneously. He had almost no ACE activity, but his Ang II level and CE activity exceeded the upper limit of the normal range and the upper limit of the 95% confidence interval of controls, respectively. His renal function also largely recovered. CONCLUSION: Fetuses with ACE mutations can be diagnosed prenatally through WES. Serial amnioinfusion permits the continuation of pregnancy in fetal ACE deficiency. Compensatory enzymes for defective ACE appeared postnatally. Renal function may be spared by preterm delivery; furthermore, for postnatal vasopressor therapy to begin, improving renal perfusion pressure before nephrogenesis has been completed.


Assuntos
Oligo-Hidrâmnio , Peptidil Dipeptidase A , Gravidez , Recém-Nascido , Masculino , Feminino , Humanos , Peptidil Dipeptidase A/genética , Diagnóstico Pré-Natal , Feto , Oligo-Hidrâmnio/diagnóstico por imagem , Oligo-Hidrâmnio/terapia , Parto Obstétrico
2.
Front Cardiovasc Med ; 10: 1198090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404743

RESUMO

Cardiovascular disease is a pathology that exhibits well-researched biological sex differences, making it possible for physicians to tailor preventative and therapeutic approaches for various diseases. Hypertension, which is defined as blood pressure greater than 130/80 mmHg, is the primary risk factor for developing coronary artery disease, stroke, and renal failure. Approximately 48% of American men and 43% of American women suffer from hypertension. Epidemiological data suggests that during reproductive years, women have much lower rates of hypertension than men. However, this protective effect disappears after the onset of menopause. Treatment-resistant hypertension affects approximately 10.3 million US adults and is unable to be controlled even after implementing ≥3 antihypertensives with complementary mechanisms. This indicates that other mechanisms responsible for modulating blood pressure are still unclear. Understanding the differences in genetic and hormonal mechanisms that lead to hypertension would allow for sex-specific treatment and an opportunity to improve patient outcomes. Therefore, this invited review will review and discuss recent advances in studying the sex-specific physiological mechanisms that affect the renin-angiotensin system and contribute to blood pressure control. It will also discuss research on sex differences in hypertension management, treatment, and outcomes.

3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555438

RESUMO

The roles of angiotensin II (Ang II) AT1 (AT1a) receptors and its downstream target Na+/H+ exchanger 3 (NHE3) in the proximal tubules in the development of two-kidney, 1-clip (2K1C) Goldblatt hypertension have not been investigated previously. The present study tested the hypothesis that deletion of the AT1a receptor or NHE3 selectively in the proximal tubules of the kidney attenuates the development of 2K1C hypertension using novel mouse models with proximal tubule-specific deletion of AT1a receptors or NHE3. 2K1C Goldblatt hypertension was induced by placing a silver clip (0.12 mm) on the left renal artery for 4 weeks in adult male wild-type (WT), global Agtr1a−/−, proximal tubule (PT)-specific PT-Agtr1a−/− or PT-Nhe3−/− mice, respectively. As expected, telemetry blood pressure increased in a time-dependent manner in WT mice, reaching a maximal response by Week 3 (p < 0.01). 2K1C hypertension in WT mice was associated with increases in renin expression in the clipped kidney and decreases in the nonclipped kidney (p < 0.05). Plasma and kidney Ang II were significantly increased in WT mice with 2K1C hypertension (p < 0.05). Tubulointerstitial fibrotic responses were significantly increased in the clipped kidney (p < 0.01). Whole-body deletion of AT1a receptors completely blocked the development of 2K1C hypertension in Agtr1a−/− mice (p < 0.01 vs. WT). Likewise, proximal tubule-specific deletion of Agtr1a in PT-Agtr1a−/− mice or NHE3 in PT-Nhe3−/− mice also blocked the development of 2K1C hypertension (p < 0.01 vs. WT). Taken together, the present study provides new evidence for a critical role of proximal tubule Ang II/AT1 (AT1a)/NHE3 axis in the development of 2K1C Goldblatt hypertension.


Assuntos
Hipertensão Renovascular , Hipertensão , Receptor Tipo 1 de Angiotensina , Trocador 3 de Sódio-Hidrogênio , Animais , Masculino , Camundongos , Angiotensina II/metabolismo , Pressão Sanguínea , Hipertensão/metabolismo , Hipertensão Renovascular/genética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Deleção de Genes , Camundongos Knockout
4.
Front Physiol ; 13: 861659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514347

RESUMO

The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) is one of the most important Na+/H+ antiporters in the small intestines of the gastrointestinal tract and the proximal tubules of the kidney. The roles of NHE3 in the regulation of intracellular pH and acid-base balance have been well established in cellular physiology using in vitro techniques. Localized primarily on the apical membranes in small intestines and proximal tubules, the key action of NHE3 is to facilitate the entry of luminal Na+ and the extrusion of intracellular H+ from intestinal and proximal tubule tubular epithelial cells. NHE3 is, directly and indirectly, responsible for absorbing the majority of ingested Na+ from small and large intestines and reabsorbing >50% of filtered Na+ in the proximal tubules of the kidney. However, the roles of NHE3 in the regulation of proximal tubular Na+ transport in the integrative physiological settings and its contributions to the basal blood pressure regulation and angiotensin II (Ang II)-induced hypertension have not been well studied previously due to the lack of suitable animal models. Recently, novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 have been generated by us and others to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal body salt and fluid balance, blood pressure homeostasis, and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The objective of this invited article is to review, update, and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension.

5.
Front Physiol ; 12: 702797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408663

RESUMO

Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world's adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.

6.
Curr Hypertens Rep ; 23(6): 34, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110521

RESUMO

PURPOSE OF REVIEW: The sodium (Na+) and hydrogen (H+) exchanger 3 (NHE3), known as solute carrier family 9 member 3 (SLC9A3), mediates active transcellular Na+ and bicarbonate reabsorption in the small intestine of the gut and proximal tubules of the kidney. The purpose of this article is to review and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure (BP) homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension. RECENT FINDINGS: Recently, our and other laboratories have generated or used novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal BP homeostasis and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The new findings demonstrate that NHE3 contributes to about 10 to 15 mmHg to basal blood pressure levels, and that deletion of NHE3 at the whole-kidney or proximal tubule level, or pharmacological inhibition of NHE3 at the kidney level with an orally absorbable NHE3 inhibitor AVE-0657, attenuates ~ 50% of Ang II-induced hypertension in mice. The results support the proof-of-concept hypothesis that NHE3 plays critical roles in physiologically maintaining normal BP and in the development of Ang II-dependent hypertension. Our results also strongly suggest that NHE3 in the proximal tubules of the kidney may be therapeutically targeted to treat poorly controlled hypertension in humans.


Assuntos
Hipertensão , Angiotensina II/metabolismo , Animais , Humanos , Hipertensão/tratamento farmacológico , Túbulos Renais Proximais , Camundongos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio
8.
Hypertension ; 76(1): 121-132, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32475319

RESUMO

The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.


Assuntos
Angiotensina II/fisiologia , Túbulos Renais Proximais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Células Cultivadas , Glicólise , Hipertensão/fisiopatologia , Imidazóis/farmacologia , Córtex Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptor Tipo 1 de Angiotensina/deficiência , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/deficiência , Trocador 1 de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Curr Opin Nephrol Hypertens ; 16(1): 22-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17143067

RESUMO

PURPOSE OF REVIEW: Diabetic nephropathy is one of the most common complications in diabetes mellitus. Multiple pathogenic mechanisms are now believed to contribute to this disease, including inflammatory cytokines, autacoids and oxidative stress. Numerous studies have shown that the kallikrein-kinin system may be involved in these mechanisms. This review focuses on recent research advance on the potential role of the kallikrein-kinin system in the development of diabetic nephropathy, and its clinical relevance. RECENT FINDINGS: A collection of recent studies has shown that angiotensin-converting enzyme inhibitors, which inhibit angiotensin II formation and degradation of bradykinin, and vasopeptidase inhibitors attenuated the development of diabetic nephropathy in experimental animals and clinical settings. The role of the kallikrein-kinin system in diabetes is further supported by findings that diabetic nephropathy is worsened in diabetic mice lacking bradykinin B2 receptors. Although long-acting bradykinin B2 receptor agonists have been shown to have renal protective effects, their therapeutic benefits have not been well studied. SUMMARY: Current experimental investigations demonstrated that pharmacological intervention of the kallikrein-kinin system improved renal conditions in diabetes mellitus. These findings suggest that the kallikrein-kinin system may be a therapeutic target in preventing and treating diabetic nephropathy.


Assuntos
Diabetes Mellitus/etiologia , Sistema Calicreína-Cinina/fisiologia , Rim/enzimologia , Animais , Bradicinina/agonistas , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Sistema Calicreína-Cinina/efeitos dos fármacos , Inibidores de Proteases/uso terapêutico , Ratos , Sistema Renina-Angiotensina/fisiologia
10.
Hypertension ; 39(2 Pt 2): 634-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11882622

RESUMO

Angiotensin-converting enzyme inhibitors (ACEi) reduce cardiovascular morbidity and mortality by improving coronary perfusion, reducing ventricular hypertrophy and remodeling, and preventing progression of coronary atherosclerosis. However, the cellular mechanisms underlying the beneficial effects of ACEi are not fully understood. We studied the in vivo effects of ACE inhibition with perindopril on cellular expression of ACE, AT(1) receptors and 2 nitric oxide synthase (NOS) isoforms, endothelial (eNOS) and inducible NOS (iNOS), in human blood vessels using quantitative in vitro autoradiography and immunocytochemistry. Seven patients with ischemic heart disease were treated with perindopril (4 mg/d) for up to 5 weeks before elective coronary bypass surgery, whereas controls did not receive the ACEi (n=7). Perindopril decreased plasma ACE by 70% and the plasma angiotensin II to angiotensin I ratio by 57% and reduced vascular ACE to approximately 65% of control levels in both endothelium and adventitia. By contrast, AT(1) receptor binding in vascular smooth muscle cells was increased by 80% in patients treated with perindopril as confirmed by immunocytochemistry. eNOS was expressed primarily in endothelial cells, whereas little iNOS expression occurred in vascular smooth muscle cells of untreated patients. Both eNOS and iNOS expression seemed to increase during perindopril treatment. These results suggest that suppression of angiotensin II formation in the vascular wall and increased expression of eNOS and iNOS during ACE inhibition may be beneficial in reversing endothelial dysfunction in patients with cardiovascular disease. Because vascular AT(1) receptor expression is increased during chronic ACE inhibition, more clinical studies are required to determine whether it is necessary to combine ACE inhibitors and AT(1) receptor antagonists in clinical management of heart failure, coronary heart disease, and hypertension


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Doença das Coronárias/metabolismo , Expressão Gênica/efeitos dos fármacos , Óxido Nítrico Sintase/biossíntese , Peptidil Dipeptidase A/biossíntese , Perindopril/farmacologia , Receptores de Angiotensina/biossíntese , Adulto , Idoso , Angiotensinas/sangue , Autorradiografia , Doença das Coronárias/enzimologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Receptores de Angiotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA