Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203797

RESUMO

One of the ways to regulate the sensitivity of human cells to the influenza virus is to knock out genes of the innate immune response. Promising targets for the knockout are genes of the interferon-inducible transmembrane protein (IFITM) family, in particular the IFITM3 gene, whose product limits the entry of a virus into the cell by blocking the fusion of the viral and endosomal membranes. In this study, by means of genome-editing system CRISPR/Cas9, monoclonal cell lines with an IFITM3 knockout were obtained based on WI-38 VA13 cells (human origin). It was found that such cell lines are more sensitive to infection by influenza A viruses of various subtypes. Nevertheless, this feature is not accompanied by an increased titer of newly formed viral particles in a culture medium.


Assuntos
Vírus da Influenza A , Humanos , Vírus da Influenza A/genética , Linhagem Celular , Meios de Cultura , Endossomos , Edição de Genes , Proteínas de Membrana/genética , Proteínas de Ligação a RNA
2.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069443

RESUMO

Research on Cas9 nucleases from different organisms holds great promise for advancing genome engineering and gene therapy tools, as it could provide novel structural insights into CRISPR editing mechanisms, expanding its application area in biology and medicine. The subclass of thermophilic Cas9 nucleases is actively expanding due to the advances in genome sequencing allowing for the meticulous examination of various microorganisms' genomes in search of the novel CRISPR systems. The most prominent thermophilic Cas9 effectors known to date are GeoCas9, ThermoCas9, IgnaviCas9, AceCas9, and others. These nucleases are characterized by a varying temperature range of the activity and stringent PAM preferences; thus, further diversification of the naturally occurring thermophilic Cas9 subclass presents an intriguing task. This study focuses on generating a construct to express a compact Cas9 nuclease (AnoCas9) from the thermophilic microorganism Anoxybacillus flavithermus displaying the nuclease activity in the 37-60 °C range and the PAM preference of 5'-NNNNCDAA-3' in vitro. Here, we highlight the close relation of AnoCas9 to the GeoCas9 family of compact thermophilic Cas9 effectors. AnoCas9, beyond broadening the repertoire of Cas9 nucleases, suggests application in areas requiring the presence of thermostable CRISPR/Cas systems in vitro, such as sequencing libraries' enrichment, allele-specific isothermal PCR, and others.


Assuntos
Sistemas CRISPR-Cas , Endonucleases , Endonucleases/metabolismo , Edição de Genes
3.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139448

RESUMO

The GAS5 gene encodes a long non-coding RNA (lncRNA) and intron-located small nucleolar RNAs (snoRNAs). Its structure, splice variants, and diverse functions in mammalian cells have been thoroughly investigated. However, there are still no data on a successful knockout of GAS5 in human cells, with most of the loss-of-function experiments utilizing standard techniques to produce knockdowns. By using CRISPR/Cas9 to introduce double-strand breaks in the terminal intronic box C/D snoRNA genes (SNORDs), we created monoclonal cell lines carrying continuous deletions in one of the GAS5 alleles. The levels of GAS5-encoded box C/D snoRNAs and lncRNA GAS5 were assessed, and the formation of the novel splice variants was analyzed. To comprehensively evaluate the influence of specific SNORD mutations, human cell lines with individual mutations in SNORD74 and SNORD81 were obtained. Specific mutations in SNORD74 led to the downregulation of all GAS5-encoded SNORDs and GAS5 lncRNA. Further analysis revealed that SNORD74 contains a specific regulatory element modulating the maturation of the GAS5 precursor transcript. The results demonstrate that the maturation of GAS5 occurs through the m6A-associated pathway in a SNORD-dependent manner, which is a quite intriguing epitranscriptomic mechanism.


Assuntos
RNA Longo não Codificante , RNA Nucleolar Pequeno , Humanos , Linhagem Celular , Íntrons/genética , Mamíferos/metabolismo , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
4.
CRISPR J ; 5(6): 799-812, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36350691

RESUMO

At the present time, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has been widely adopted as an efficient genomic editing tool. However, there are some actual problems such as the off-target effects, cytotoxicity, and immunogenicity. The incorporation of modifications into guide RNAs permits enhancing both the efficiency and the specificity of the CRISPR-Cas9 system. In this study, we demonstrate that the inclusion of N6-methyladenosine, 5-methylcytidine, and pseudouridine in trans-activating RNA (tracrRNA) or in single guide RNA (sgRNA) enables efficient gene editing in vitro. We found that the complexes of modified guide RNAs with Cas9 protein promoted cleavage of the target short/long duplexes and plasmid substrates. In addition, the modified monomers in guide RNAs allow increasing the specificity of CRISPR-Cas9 system in vitro and promote diminishing both the immunostimulating and the cytotoxic effects of sgRNAs.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Nucleosídeos , Pequeno RNA não Traduzido/genética
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430145

RESUMO

Small nucleolar RNAs (snoRNAs) are a highly expressed class of non-coding RNAs known for their role in guiding post-transcriptional modifications of ribosomal RNAs and small nuclear RNAs. Emerging studies suggest that snoRNAs are also implicated in regulating other vital cellular processes, such as pre-mRNA splicing and 3'-processing of mRNAs, and in the development of cancer and viral infections. There is an emerging body of evidence for specific snoRNA's involvement in the optimal replication of RNA viruses. In order to investigate the expression pattern of snoRNAs during influenza A viral infection, we performed RNA sequencing analysis of the A549 human cell line infected by influenza virus A/Puerto Rico/8/1934 (H1N1). We identified 66 that were upregulated and 55 that were downregulated in response to influenza A virus infection. The increased expression of most C/D-box snoRNAs was associated with elevated levels of 5'- and 3'-short RNAs derived from this snoRNA. Analysis of the poly(A)+ RNA sequencing data indicated that most of the differentially expressed snoRNAs synthesis was not correlated with the corresponding host genes expression. Furthermore, influenza A viral infection led to an imbalance in the expression of genes responsible for C/D small nucleolar ribonucleoprotein particles' biogenesis. In summary, our results indicate that the expression pattern of snoRNAs in A549 cells is significantly altered during influenza A viral infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/genética , RNA Ribossômico
6.
Gene ; 809: 146024, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673207

RESUMO

Using cell cultures of human origin for the propagation of influenza virus is an attractive way to preserve its glycosylation profile and antigenic properties, which is essential in influenza surveillance and vaccine production. However, only few cell lines are highly permissive to influenza virus, and none of them are of human origin. The barrier might be associated with host restriction factors inhibiting influenza growth, such as AnxA6 protein counteracting the process of influenza virion packaging. In the presented work we explore the CRISPR-Cas9 mediated knockout of ANXA6 gene as a way to overcome the host restriction barrier and increase the susceptibility of human cell line to influenza infection. By CRISPR-Cas9 genome editing we modified HEK293FT cells and obtained several clones defective in the ANXA6 gene. The replication of the influenza A virus in original HEK293FT cells and the HEK293FT-ANXA6-/- mutant cells was compared in growth curve experiments. By combination of methods including TCID assay and flow cytometry we showed that accumulation of influenza A virus in the mutant HEK293FT-ANXA6-/- cells significantly exceeded the virus titer in the original HEK293FT cells.


Assuntos
Anexina A6/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/fisiologia , Replicação Viral/fisiologia , Anexina A6/metabolismo , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Vírus da Influenza A/patogenicidade , Vírion/fisiologia
7.
Data Brief ; 33: 106604, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33318985

RESUMO

Human influenza remains a serious public health problem. This data article reports the transcriptome analysis data of human cell lines infected with influenza A/Puerto Rico/8/1934 (H1N1) virus. Mock-infected cells were included as controls. Human embryonic fibroblasts (MRC-5) and immortalized cell lines (A549, HEK293FT, WI-38 VA-13) were selected for RNA sequencing using Illumina NextSeq500 platform. Raw data were applied to the bioinformatic pipeline, which includes quality control with FastQC and MultiQC, adapter and quality trimming with Cutadapt, filtering to the genome of influenza A with STAR, transcript quantification with Salmon tool (GRCh38_RefSeq_Transcripts). Differential expressed genes were identified using R package DESeq2 with FDR-adjusted p-value < 0.001 and absolute value of log2(FC) > 1. Lists of differentially expressed genes is provided. The raw and processed RNA-seq data presented in this article were deposited to the European Nucleotide Archive via the ArrayExpress partner repository with the dataset accession number E-MTAB-9511 .

8.
Front Pharmacol ; 10: 1246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780925

RESUMO

CRISPR technologies are nowadays widely used for targeted knockout of numerous protein-coding genes and for the study of various processes and metabolic pathways in human cells. Most attention in the genome editing field is now focused on the cleavage of protein-coding genes or genes encoding long non-coding RNAs (lncRNAs), while the studies on targeted knockout of intron-encoded regulatory RNAs are sparse. Small nucleolar RNAs (snoRNAs) present a class of non-coding RNAs encoded within the introns of various host genes and involved in post-transcriptional maturation of ribosomal RNAs (rRNAs) in eukaryotic cells. Box C/D snoRNAs direct 2'-O-methylation of rRNA nucleotides. These short RNAs have specific elements in their structure, namely, boxes C and D, and a target-recognizing region. Here, we present the study devoted to CRISPR/Cas9-mediated editing of box C/D snoRNA genes in Gas5. We obtained monoclonal cell lines carrying mutations in snoRNA genes and analyzed the levels of the mutant box C/D snoRNA as well as the 2'-O-methylation status of the target rRNA nucleotide in the obtained cells. Mutations in SNORD75 in the obtained monoclonal cell line were shown to result in aberrant splicing of Gas5 with exclusion of exons 3 to 5, which was confirmed by RT-PCR and RNA-Seq. The obtained results suggest that SNORD75 contains an element for binding of some factors regulating maturation of Gas5 pre-lncRNA. We suggest that METTL3/METTL14 is among such factors, and m6A-methylation pathways are involved in regulation of Gas5 splicing. Our results shell light on the role of SNORDs in regulating splicing of the host gene.

9.
Front Pharmacol ; 10: 1043, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619993

RESUMO

Cell penetrating peptides (CPP) are promising agents for transporting diverse cargo into the cells. The amino acid sequence and the mechanism of lactaptin entry into the cells allow it to be included into CPP group. Lactaptin, the fragment of human milk kappa-casein, and recombinant lactaptin (RL2) were initially discovered as molecules that induced apoptosis of cultured cancer cells and did not affect non-malignant cells. Here, we analyzed the recombinant lactaptin potency to form complexes with nucleic acids and to act as a gene delivery system. To study RL2-dependent delivery, three type of nucleic acid were used as a models: plasmid DNA (pDNA), siRNA, and non-coding RNA which allow to detect intracellular localization through their functional activity. We have demonstrated that RL2 formed positively charged noncovalent 110-nm-sized complexes with enhanced green fluorescent protein (EGFP)-expressing plasmid DNA. Ca2+ ions stabilized these complexes, whereas polyanion heparin displaced DNA from the complexes. The functional activity of delivered nucleic acids were assessed by fluorescent microscopy using A549 lung adenocarcinoma cells and A431 epidermoid carcinoma cells. We observed that RL2:pDNA complexes provided EGFP expression in the treated cells and that strongly confirmed the entering pDNA into the cells. The efficiency of cell transformation by these complexes increased when RL2:pDNA ratio increased. Pre-treatment of the cells with anti-RL2 antibodies partly inhibited the entry of pDNA into the cells. RL2-mediated delivery of siRNA against EGFP was analyzed when A549 cells were co-transfected with EGFP-pDNA and RL2:siRNA complexes. siRNA against EGFP efficiently inhibited the expression of EGFP being delivered as RL2:siRNA complexes. We have previously demonstrated that non-coding U25 small nucleolar RNA (snoRNA) can decrease cell viability. Cancer cell transfection with RL2-snoRNA U25 complexes lead to a substantial decrease of cell viability, confirming the efficiency of snoRNA U25 delivery. Collectively, these findings indicate that recombinant lactaptin is able to deliver noncovalently associated nucleic acids into cancer cells in vitro.

10.
Biochimie ; 167: 49-60, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493470

RESUMO

Genome-editing technologies, in particular, CRISPR systems, are widely used for targeted regulation of gene expression and obtaining modified human and animal cell lines, plants, fungi, and animals with preassigned features. Despite being well described and easy to perform, the most common methods for construction and delivery of CRISPR/Cas9-containing plasmid systems possess significant disadvantages, mostly associated with effects of the presence of exogenous DNA within the cell. Transfection with active ribonucleoprotein complexes of Cas9 with single-guide RNAs (sgRNAs) represents one of the most promising options because of faster production of sgRNAs, the ability of a researcher to control the amount of sgRNA delivered into the cell, and consequently, fewer off-target mutations. Artificial-RNA synthesis strategies allow for the introduction of various modified components, such as backbone alterations, native structural motifs, and labels for visualization. Modifications of RNA can increase its resistance to hydrolysis, alter the thermodynamic stability of RNA-protein and RNA-DNA complexes, and reduce the immunogenic and cytotoxic effects. This review describes various approaches to improving synthetic guide RNA function through nucleotide modification.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos , Animais , Linhagem Celular , Fungos/genética , Expressão Gênica , Humanos , Plantas/genética , RNA Guia de Cinetoplastídeos/síntese química , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , Transfecção
11.
Genes (Basel) ; 9(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400232

RESUMO

Short nuclear regulatory RNAs play a key role in the main stages of maturation of the precursors of the major RNA species. Small nuclear RNAs (snRNAs) form the core of the spliceosome and are responsible for the splicing of pre-mRNA molecules. Small nucleolar RNAs (snoRNAs) direct post-transcriptional modification of pre-rRNAs. A promising strategy for the development of non-coding RNA (ncRNAs) mimicking molecules is the introduction of modified nucleotides, which are normally present in natural ncRNAs, into the structure of synthetic RNAs. We have created a set of snoRNAs and snRNA analogs and studied the effect of base modifications, specifically, pseudouridine (Ψ) and 5-methylcytidine (m5C), on the immune-stimulating and cytotoxic properties of these RNAs. Here, we performed a whole-transcriptome study of the influence of synthetic snoRNA analogs with various modifications on gene expression in human cells. Moreover, we confirmed the role of PKR in the recognition of snoRNA and snRNA analogs using the short hairpin RNA (shRNA) technique. We believe that the data obtained will contribute to the understanding of the role of nucleotide modification in ncRNA functions, and can be useful for creating the agents for gene regulation based on the structure of natural snoRNAs and snRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA