Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477088

RESUMO

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Assuntos
Neoplasias Colorretais , Interleucina-6 , Humanos , Interleucina-6/efeitos adversos , Interleucina-6/metabolismo , Fosforilação , beta Catenina/metabolismo , Via de Sinalização Wnt , Janus Quinase 2/metabolismo , Neoplasias Colorretais/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Oncogene ; 41(16): 2390-2403, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277657

RESUMO

Breast cancer stem cells (BCSCs) are the main drivers of recurrence and metastasis. However, commonly used drugs rarely target BCSCs. Via screenings, we found that Salt-inducible kinase 2 (SIK2) participated in breast cancer (BC) stemness maintenance and zebrafish embryos development. SIK2 was upregulated in recurrence samples. Knockdown of SIK2 expression reduced the proportion of BCSCs and the tumor initiation of BC cells. Mechanistically, SIK2, phosphorylated by CK1α, directly phosphorylated LRP6 in a SIK2 kinase activity-dependent manner, leading to Wnt/ß-catenin signaling pathway activation. ARN-3236 and HG-9-91-01, inhibitors of SIK2, inhibited LRP6 phosphorylation and ß-catenin accumulation and disturbed stemness maintenance. In addition, the SIK2-activated Wnt/ß-catenin signaling led to induction of IDH1 expression, causing metabolic reprogramming in BC cells. These findings demonstrate a novel mechanism whereby Wnt/ß-catenin signaling pathway is regulated by different kinases in response to metabolic requirement of CSCs, and suggest that SIK2 inhibition may potentially be a strategy for eliminating BCSCs.


Assuntos
Neoplasias da Mama , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Serina-Treonina Quinases , Via de Sinalização Wnt , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Int J Biol Sci ; 18(4): 1539-1554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280671

RESUMO

Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms underlying the hyperactivation of Wnt/ß-catenin signaling are incompletely understood. In this study, Pantothenate kinase 1 (PANK1) is shown to be a negative regulator of Wnt/ß-catenin signaling. Downregulation of PANK1 in HCC correlates with clinical features. Knockdown of PANK1 promotes the proliferation, growth and invasion of HCC cells, while overexpression of PANK1 inhibits the proliferation, growth, invasion and tumorigenicity of HCC cells. Mechanistically, PANK1 binds to CK1α, exerts protein kinase activity and cooperates with CK1α to phosphorylate N-terminal serine and threonine residues in ß-catenin both in vitro and in vivo. Additionally, the expression levels of PANK1 and ß-catenin can be used to predict the prognosis of HCC. Collectively, the results of this study highlight the crucial roles of PANK1 protein kinase activity in inhibiting Wnt/ß-catenin signaling, suggesting that PANK1 is a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Quinases/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
5.
Cancer Res ; 82(1): 60-74, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764205

RESUMO

Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/ß-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/ß-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, whereas overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and to promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3ß to promote ß-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of ß-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. In addition, expression levels of NME7, ß-catenin, and MTHFD2 correlated with each other and with poor prognosis in patients with HCC. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/ß-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC. SIGNIFICANCE: The identification of NME7 as an activator of Wnt/ß-catenin signaling and MTHFD2 expression in HCC reveals a mechanism regulating one-carbon metabolism and potential therapeutic strategies for treating this disease.


Assuntos
Carbono/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Proteínas Quinases/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia
6.
Front Oncol ; 10: 1166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850334

RESUMO

N6-methyladenosine (m6A) modification has been reported as a critical regulator of gene transcript expression. Although m6A modification plays important roles in tumor development, its role in therapeutic resistance remains unknown. In this study, we aimed to examine the expression level of m6A-modification related proteins and elucidate the effect of m6A-related proteins on radiation response in nasopharyngeal carcinoma (NPC). Among the genes that participated in m6A modification, YTHDC2, a m6A reader, was found to be consistently highly expressed in radioresistant NPC cells. Knocking down of YTHDC2 expression in radioresistant NPC cells improved the therapeutic effect of radiotherapy in vitro and in vivo, whereas overexpression of YTHDC2 in radiosensitive NPC cells exerted an opposite effect. Bioinformatics and mechanistic studies revealed that YTHDC2 could physically bound to insulin-like growth factor 1 receptor (IGF1R) messenger RNA and promoted translation initiation of IGF1R mRNA, which in turn activated the IGF1R-AKT/S6 signaling pathway. Thus, the present study suggests that YTHDC2 promotes radiotherapy resistance of NPC cells by activating the IGF1R/ATK/S6 signaling axis and may serve as a potential therapeutic target in radiosensitization of NPC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA