Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4131, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374396

RESUMO

Since 24 February 2022, Ukraine has experienced full-scale military aggression initiated by the Russian Federation. The war has had a major negative impact on vegetation cover of war-affected regions. We explored interactions between pre-war forest management and the impacts of military activities in three of the most forested Ukrainian areas of interest (AOI), affected by the war. These were forests lying between Kharkiv and Luhansk cities (AOI 'East'), forests along the Dnipro River delta (AOI 'Kherson'), and those of the Chornobyl Exclusion Zone (AOI CEZ). We used Sentinel satellite imagery to create damaged forest cover masks for the year 2022. We mapped forests with elevated fire hazard, which was defined as a degree of exposure to the fire-supporting land use (mostly an agricultural land, a common source of ignitions in Ukraine). We evaluated the forest disturbance rate in 2022, as compared to pre-war rates. We documented significant increases in non-stand replacing disturbances (low severity fires and non-fire disturbances) for all three of the AOIs. Damaged forest cover varied among the AOIs (24,180 ± 4,715 ha, or 9.3% ± 1.8% in the 'East' AOI; 7,293 ± 1,925 ha, or 15.7% ± 4.1% in the 'Kherson' AOI; 7,116 ± 1,274 ha, or 5.0% ± 0.9% in the CEZ AOI). Among the forests damaged in 2022, the 'Kherson' AOI will likely have the highest proportion of an area with elevated fire hazard in the coming decades, as compared to other regions (89% vs. 70% in the 'East' and CEZ AOIs respectively). Future fire risks and extensive war-related disturbance of forest cover call for forest management to develop strategies explicitly addressing these factors.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Ucrânia , Florestas
2.
J Environ Manage ; 345: 118736, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542807

RESUMO

Wildfires in the Chornobyl Exclusion Zone (CEZ) and other radioactively contaminated areas threaten human health and well-being with the potential to resuspend radionuclides. Wildfire behavior simulation is a necessary tool to examine the efficiency of fuel treatments in the CEZ, but it requires systematically updated maps of fuel types and canopy metrics. The objective of this study was to demonstrate an effective approach for mapping fuel types, canopy height (CH), and canopy cover (CC) in territories contaminated by radionuclides using Landsat time series (LTS) and Global Ecosystem Dynamics Investigation (GEDI) LiDAR observations. We combined LTS and GEDI data to map fuel types and canopy metrics used in wildfire simulations within the CEZ. Our classification model showed an adequate overall accuracy (75%) in mapping land covers and associated fuel types. The phenology metrics extracted from LTS reliably distinguished spectrally similar vegetation types (such as grasslands and croplands) which exhibit different flammability through the year. We also predicted a suite of relative heights metrics and CC at Landsat 30-m pixel level (R2 = 0.23-0.26) using the nearest neighbor technique. The imputed maps adequately captured the dynamics of CH and CC in the CEZ after recent large wildfires occurred in 2015, 2020, and 2022. Thus, we illustrate a LTS processing approach to produce wall-to-wall maps of canopy characteristics that are important for wildfire simulations. We conclude that continuous updating of land cover and canopy fuel data is crucial to ensure relevant fire management of radioactively contaminated landscapes and support local decision-making.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Ecossistema , Benchmarking , Fatores de Tempo , Conservação dos Recursos Naturais/métodos , Florestas
3.
Environ Res Lett ; 16(6): 064019, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316296

RESUMO

Open burning is illegal in Ukraine, yet Ukraine has, on average, 300 times more fire activity per year (2001-2019) than most European countries. In 2016 and 2017, 47% of Ukraine was identified as cultivated area, with a total of 70% of land area dedicated to agricultural use. Over 57% of all active fires in Ukraine detected using space-borne Visible Infrared Imaging Radiometer Suite (VIIRS) during 2016 and 2017 were associated with pre-planting field clearing and post-harvest crop residue removal, meaning that the majority of these fires are preventable. Due to the small size and transient nature of cropland burns, satellite-based burned area (BA) estimates are often underestimated. Moreover, traditional spectral-based BA algorithms are not suitable for distinguishing burned from plowed fields, especially in the black soil regions of Ukraine. Therefore, we developed a method to estimate agricultural BA by calibrating VIIRS active fire data with exhaustively mapped cropland reference areas (42 958 fields). Our study found that cropland BA was significantly underestimated (by 30%-63%) in the widely used Moderate Resolution Imaging Spectroradiometer-based MCD64A1 BA product, and by 95%-99.9% in Ukraine's National Greenhouse Gas Inventory. Although crop residue burns are smaller and emit far less emissions than larger wildfires, reliable monitoring of crop residue burning has a number of important benefits, including (a) improving regional air quality models and the subsequent understanding of human health impacts due to the proximity of crop residue burns to urban locations, (b) ensuring an accurate representation of predominantly smaller fires in regional emission inventories, and (c) increasing awareness of often illegal managed open burning to provide improved decision-making support for policy and resource managers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA