Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(8): e202104108, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34882848

RESUMO

Covalent organic frameworks (COFs) offer vast structural and chemical diversity enabling a wide and growing range of applications. While COFs are well-established as heterogeneous catalysts, so far, their high and ordered porosity has scarcely been utilized to its full potential when it comes to spatially confined reactions in COF pores to alter the outcome of reactions. Here, we present a highly porous and crystalline, large-pore COF as catalytic support in α,ω-diene ring-closing metathesis reactions, leading to increased macrocyclization selectivity. COF pore-wall modification by immobilization of a Grubbs-Hoveyda-type catalyst via a mild silylation reaction provides a molecularly precise heterogeneous olefin metathesis catalyst. An increased macro(mono)cyclization (MMC) selectivity over oligomerization (O) for the heterogeneous COF-catalyst (MMC:O=1.35) of up to 51 % compared to the homogeneous catalyst (MMC:O=0.90) was observed along with a substrate-size dependency in selectivity, pointing to diffusion limitations induced by the pore confinement.


Assuntos
Alcenos , Estruturas Metalorgânicas , Catálise , Ciclização , Porosidade
2.
Chemistry ; 27(68): 17220-17229, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34672398

RESUMO

Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py-Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the ß(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable ß-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent ß-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the ß(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high ß(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica.

3.
J Am Chem Soc ; 141(48): 19014-19022, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31694374

RESUMO

The synthesis of macrocycles is severely impeded by concomitant oligomer formation. Here, we present a biomimetic approach that utilizes spatial confinement to increase macrocyclization selectivity in the ring-closing metathesis of various dienes at elevated substrate concentration up to 25 mM using an olefin metathesis catalyst selectively immobilized inside ordered mesoporous silicas with defined pore diameters. By this approach, the ratio between macro(mono)cyclization (MMC) product and all undesired oligomerization products (O) resulting from acyclic diene metathesis polymerization was increased from 0.55, corresponding to 35% MMC product obtained with the homogeneous catalyst, up to 1.49, corresponding to 60% MMC product. A correlation between the MMC/O ratio and the substrate-to-pore-size ratio was successfully established. Modification of the inner pore surface with dimethoxydimethylsilane allowed fine-tuning the effective pore size and reversing surface polarity, which resulted in a further increase of the MMC/O ratio up to 2.2, corresponding to >68% MMC product. Molecular-level simulations in model pore geometries help to rationalize the complex interplay between spatial confinement, specific (substrate and product) interaction with the pore surface, and diffusive transport. These effects can be synergistically adjusted for optimum selectivity by suitable surface modification.


Assuntos
Alcenos/química , Compostos Macrocíclicos/síntese química , Alcenos/síntese química , Biomimética/métodos , Catálise , Técnicas de Química Sintética/métodos , Ciclização , Compostos Macrocíclicos/química , Modelos Moleculares , Polimerização , Porosidade , Rutênio/química , Dióxido de Silício/química
4.
Bioresour Technol ; 143: 139-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792664

RESUMO

Poplar wood chips were treated hydrothermally and the increase of process efficiency by water recirculation was examined. About 15% of the carbon in the biomass was dissolved in the liquid phase when biomass was treated in de-ionized water at 220 °C for 4 h. The dissolved organic matter contained oxygen and was partly aerobically biodegradable. About 30-50% of the total organic carbon originated from organic acids. A polar and aromatic fraction was extracted and a major portion of the organic load was of higher molecular weight. By process water recirculation organic acids in the liquid phase concentrated and catalyzed dehydration reactions. As a consequence, functional groups in hydrothermally synthesized coal declined and dewaterability was enhanced. Recirculated reactive substances polymerized and formed additional solid substance. As a result, carbon and energetic yields of the produced coal rose to 84% and 82%, respectively.


Assuntos
Carbono/química , Água/química , Biomassa , Espectrofotometria Infravermelho
5.
Bioresour Technol ; 102(16): 7595-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646017

RESUMO

This paper presents a set of calorimetric measurements with the aim of better understanding the calorific nature of hydrothermal carbonization. Presented values so far show an inadequately high scatter to do so, preventing a well funded assessment of the energetic feasibility of this process. The heat released during hydrothermal carbonization at 240°C measured with the applied differential calorimetry setup is -1.06MJ/kg(glucose,daf) with a standard deviation of 14%, -1.07MJ/kg(cellulose,daf) with a standard deviation of 9%, and -0.76MJ/kg(wood,daf) with a standard deviation of 32%. These results are in good agreement with the theoretically derived maximum heat release. Despite the comparably high experimental standard deviation of these results, their accuracy is considerably higher than previously published results.


Assuntos
Carbono/química , Temperatura Alta , Modelos Químicos , Calorimetria , Celulose/química , Glucose/química , Cinética , Populus/química , Água/química , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA