Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39026037

RESUMO

Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.

2.
Int J Biol Sci ; 20(8): 2860-2880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904024

RESUMO

Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.


Assuntos
Astrócitos , DNA Polimerase gama , DNA Polimerase Dirigida por DNA , Mitocôndrias , Mutação , Astrócitos/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Humanos , Mitocôndrias/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios/metabolismo , Potencial da Membrana Mitocondrial , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Técnicas de Cocultura
3.
Protein Sci ; 33(7): e5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38895984

RESUMO

Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.


Assuntos
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , NAD/metabolismo , Domínios Proteicos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cristalografia por Raios X , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Evolução Molecular , Modelos Moleculares , Filogenia , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA