Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 231(4): e13592, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33269519

RESUMO

AIM: The intraglomerular mesangial cells are located between the glomerular capillaries. Here we hypothesized that mesangial cells regulate the single nephron glomerular filtration rate (snGFR) and that mesangial cells support the integrity of the glomerular filtration barrier. METHODS: We assessed the function of mesangial cells in vivo by multiphoton microscopy. Mesangial cells were depleted in Munich Wistar Froemter rats using the Thy1.1 antibody model. RESULTS: The Thy1.1 antibody caused the cell-specific loss of 82 ± 3% of mesangial cells. After mesangial cell depletion, the baseline snGFR was reduced to 12.0 ± 1.2 vs 32.4 ± 3.2 nL/min in controls. In control rats, the snGFR decreased after angiotensin II infusion by 61 ± 3% (P = .004), whereas it remained unchanged in Thy1.1-treated rats. The changes in the snGFR after angiotensin II infusion in control rats were accompanied by the marked rotation of the capillary loops within Bowman's space. This phenomenon was absent in anti-Thy1.1-treated rats. The glomerular sieving coefficient (GSCA ) for albumin, used as a measure of the integrity of the glomerular filtration barrier, was low in control rats (0.00061 ± 0.00004) and increased after angiotensin II infusion (0.00121 ± 0.00015). In Thy1.1-treated rats, the GSC was elevated (0.0032 ± 0.00059) and did not change in response to angiotensin II. Electron microscopy revealed the increased thickness of the glomerular basement membrane after mesangial cell depletion. CONCLUSION: Our data suggest that mesangial cells actively contribute to the regulation of the snGFR. Furthermore, mesangial cells are crucially involved in maintaining the integrity of the glomerular filtration barrier, in part by modulating the thickness of the glomerular basement membrane.


Assuntos
Barreira de Filtração Glomerular , Células Mesangiais , Animais , Taxa de Filtração Glomerular , Microscopia , Néfrons , Ratos , Ratos Wistar
2.
Nat Metab ; 2(5): 461-474, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32694662

RESUMO

Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.


Assuntos
Albuminúria/etiologia , Insuficiência Renal Crônica/complicações , Albuminúria/genética , Albuminúria/patologia , Animais , Capilares , Modelos Animais de Doenças , Feminino , Genótipo , Barreira de Filtração Glomerular , Taxa de Filtração Glomerular , Humanos , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Teóricos , Podócitos/patologia , Podócitos/ultraestrutura , RNA/genética , Insuficiência Renal Crônica/patologia , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA