Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Cancer ; 23(1): 672, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464317

RESUMO

BACKGROUND: A majority of prostate cancer cells are in a non-proliferating, G0 (quiescent) phase of the cell cycle and may lie dormant for years before activation into a proliferative, rapidly progressing, disease phase. Many mechanisms which influence proliferation and quiescence choices remain to be elucidated, including the role of non-coding RNAs. In this study, we investigated the role of a long non-coding RNA (lncRNA), SNHG1, on cell proliferation, quiescence, and sensitivity to docetaxel as a potential factor important in prostate cancer biology. METHODS: Publically available, anonymous, clinical data was obtained from cBioPortal for analysis. RNAi and prostate cancer cell lines were utilized to investigate SNHG1 in vitro. We measured G0 cells, DNA synthesis, and cell cycle distribution by flow cytometry. Western blotting was used to assess G2 arrest and apoptosis. These parameters were also investigated following docetaxel treatment. RESULTS: We discovered that in prostate cancer patients from The Cancer Genome Atlas (TCGA) data set, high SNHG1 expression in localized tumors correlated with reduced progression-free survival, and in a data set of both primary and metastatic tumors, high SNHG1 expression was associated with metastatic tumors. In vitro analysis of prostate cancer cell lines showed SNHG1 expression correlated with a quiescent versus proliferative phenotype. Knockdown of SNHG1 by RNAi in PC3 and C4-2B cells resulted in an accumulation of cells in the G0 phase. After knockdown, 60.0% of PC3 cells were in G0, while control cultures had 13.2% G0. There were reciprocal decreases in G1 phase, but little impact on the proportion of cells in S and G2/M phases, depending on cell line. DNA synthesis and proliferation were largely halted- decreasing by 75% and 81% in C4-2B and PC3 cells, respectively. When cells were treated with docetaxel, SNHG1-depleted C4-2B and PC3 cells were resistant to G2 arrest, and displayed reduced apoptosis, as indicated by reduced cyclin B1 and cleaved caspase 3, suggesting SNHG1 levels may modulate drug response. CONCLUSIONS: Overall, these results indicate SNHG1 has complex roles in prostate cancer, as it stimulates cell cycle entry and disease progression, but sensitizes cells to docetaxel treatment.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Humanos , Masculino , Docetaxel/farmacologia , Divisão Celular , Proliferação de Células/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , DNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Transl Oncol ; 31: 101642, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36805918

RESUMO

Quiescent prostate cancer (PCa) cells are common in tumors but are often resistant to chemotherapy. Quiescent PCa cells are also enriched for a stem-like tumor initiating population, and can lead to recurrence after dormancy. Unfortunately, quiescent PCa cells are difficult to identify and / or target with treatment in part because the relevant markers are intracellular and regulated by protein stability. We addressed this problem by utilizing PCa cells expressing fluorescent markers for CDKN1B (p27) and CDT1, which can separate viable PCa cells into G0, G1, or combined S/G2/M populations. We used FACS to collect G1 and G0 PC3 PCa cells, isolated membrane proteins, and analyzed protein abundance in G0 vs G1 cells by gas chromatography mass spectrometry. Enrichment analysis identified nucleocytoplasmic transport as the most significantly different pathway. To identify cell surface proteins potentially identifying quiescent PCa cells for future patient samples or for antibody based therapeutic research, we focused on differentially abundant plasma membrane proteins, and identified ERBB2 (HER2) as a cell surface protein enriched on G0 PCa cells. High HER2 on the cell membrane is associated with quiescence in PCa cells and likely induced by the bone microenvironment. Using a drug conjugated anti-HER2 antibody (trastuzumab emtansine) in a mouse PCa xenograft model delayed metastatic tumor growth, suggesting approaches that target HER2-high cells may be beneficial in treating PCa. We propose that HER2 is deserving of further study in PCa as a target on quiescent cells to prevent recurrence, decrease chemotherapy resistance, or eradicate minimal residual disease.

4.
Life (Basel) ; 11(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685470

RESUMO

Wnt family proteins and ß-catenin are critical for the regulation of many developmental and oncogenic processes. Wnts are secreted protein ligands which signal using a canonical pathway, and involve the transcriptional co-activator ß-catenin or non-canonical pathways that are independent of ß-catenin. Bone metastasis is unfortunately a common occurrence in prostate cancer and can be conceptualized as a series of related steps or processes, most of which are regulated by Wnt ligands and/or ß-catenin. At the primary tumor site, cancer cells often take on mesenchymal properties, termed epithelial mesenchymal transition (EMT), which are regulated in part by the Wnt receptor FZD4. Then, Wnt signaling, especially Wnt5A, is of importance as the cells circulate in the blood stream. Upon arriving in the bones, cancer cells migrate and take on stem-like or tumorigenic properties, as aided through Wnt or ß-catenin signaling involving CHD11, CD24, and Wnt5A. Additionally, cancer cells can become dormant and evade therapy, in part due to regulation by Wnt5A. In the bones, E-selectin can aid in the reversal of EMT, a process termed mesenchymal epithelial transition (MET), as a part of metastatic tumorigenesis. Once bone tumors are established, Wnt/ß-catenin signaling is involved in the suppression of osteoblast function largely through DKK1.

5.
J Bone Oncol ; 30: 100386, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34466376

RESUMO

Prostate cancer (PCa) metastasis research has been hamstrung by lack of animal models that closely resemble the disease present in most patients - that metastasize to bone, are dependent on the androgen receptor (AR), and grow in an immune competent host. Here, we adapt the Myc-CaP cell line for use as a PCa androgen dependent, immune competent bone metastases model and characterize the metastases. After injection into the left cardiac ventricle of syngeneic FVB/NJ mice, these cells formed bone metastases in the majority of animals; easily visible on H&E sections and confirmed by immunohistochemistry for Ar and epithelial cell adhesion molecule. Mediastinal tumors were also observed. We also labeled Myc-CaP cells with tdTomato, and confirmed the presence of cancer cells in bone by flow cytometry. To adapt the model to a bone predominant metastasis pattern and further examine the bone phenotype, we labeled the cells with luciferase, injected in the tibia and observed tumor formation only in tibia with a mixed osteolytic/osteoblastic phenotype. The presence of Myc-CaP tumors significantly increased tibia bone volume as compared to sham injected controls. The osteoclast marker, TRAcP-5b was not significantly changed in plasma from tibial tumor bearing animals vs. sham animals. However, conditioned media from Myc-CaP cells stimulated osteoclast formation in vitro from FVB/NJ mouse bone marrow. Overall, Myc-CaP cells injected in the left ventricle or tibia of syngeneic mice recapitulate key aspects of human metastatic PCa.

6.
Oxid Med Cell Longev ; 2015: 181260, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180580

RESUMO

With recent insight into the mechanisms involved in diseases, such as cardiovascular disease, cancer, stroke, neurodegenerative diseases, and diabetes, more efficient modes of treatment are now being assessed. Traditional medicine including the use of natural products is widely practiced around the world, assuming that certain natural products contain the healing properties that may in fact have a preventative role in many of the diseases plaguing the human population. This paper reviews the biological effects of a group of natural compounds called polyphenols, including apigenin, epigallocatechin gallate, genistein, and (-)-epicatechin, with a focus on the latter. (-)-Epicatechin has several unique features responsible for a variety of its effects. One of these is its ability to interact with and neutralize reactive oxygen species (ROS) in the cell. (-)-Epicatechin also modulates cell signaling including the MAP kinase pathway, which is involved in cell proliferation. Mutations in this pathway are often associated with malignancies, and the use of (-)-epicatechin holds promise as a preventative agent and as an adjunct for chemotherapy and radiation therapy to improve outcome. This paper discusses the potential of some phenolic compounds to maintain, protect, and possibly reinstate health.


Assuntos
Catequina/análogos & derivados , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Polifenóis/uso terapêutico , Catequina/química , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Polifenóis/química , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Cell Biochem ; 116(2): 212-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25186310

RESUMO

DNA methylation has been studied with regard to chemotherapeutics for a number of years. The radiation field has just begun to look at this in the context of radiotherapy or radiation exposure. So far, the data suggest that radiation induces epigenetic reprogramming which indicates a purposeful response that influences the cell fate or alters the response to future exposure. Further studies may result in discovery of biomarkers for radiotherapy outcome or prediction of the degree of radiation resistance. Past and ongoing development of DNMT1 inhibitors that lead to DNA hypomethylation appear to sensitize many tumor types to radiation and may be an area with long term clinical implications.


Assuntos
Metilação de DNA/efeitos da radiação , Epigênese Genética/efeitos da radiação , Neoplasias/radioterapia , Radiobiologia/métodos , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Radiobiologia/tendências , Resultado do Tratamento
8.
Radiat Res ; 182(1): 50-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24909911

RESUMO

Pancreatic cancer is relatively radioresistant, however, radiotherapy has been shown to provide efficacy in the treatment of local disease. To increase the effectiveness of radiotherapy in pancreatic cancer, radiosensitizing drugs are under development. In this study, we investigated the radiosensitizing activity of the anti-diabetic drug metformin on pancreatic cancer cells in vitro. We demonstrated that metformin radiosensitized MiaPaCa-2 and Panc1 cells with radiation enhancement ratios (ER) ranging from 1.33-1.45 with metformin concentrations of 30-100 µM, and in addition, we showed that metformin sensitized cells to gemcitabine alone or in combination with radiation treatment. In addition, we found that pancreatic cancer stem cell-like cells showed enhanced radiosensitization in a tumorsphere assay with a REF of 1.66. At these radiosensitizing doses, metformin alone had low toxicity (as shown by >75% clonogenic survival) and did not affect cell cycle. The combination of metformin and radiation yielded greater numbers of γ-H2AX foci after 1 h compared to radiation alone, suggesting increased DNA damage signaling. Examination of the AMPK pathway showed that pharmacological inhibition of AMPK signaling or RNAi of AMPKα1 reversed metformin-mediated radiosensitization. These studies show that metformin radiosensitization of pancreatic cancer cells at micromolar concentration acts through AMPK and may affect DNA damage signaling. The data indicate that metformin may increase the efficacy of radiation therapy for pancreatic cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metformina/farmacologia , Neoplasias Pancreáticas/patologia , Radiossensibilizantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação
9.
PLoS One ; 9(2): e88322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516636

RESUMO

Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (-)-epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (-)-epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (-)-Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (-)-Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF) of 1.7, 1.5, and 1.2, respectively. (-)-Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (-)-Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (-)-epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.


Assuntos
Catequina/farmacologia , Mitocôndrias/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Quinase do Ponto de Checagem 2/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fosfotreonina/metabolismo , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante
10.
Epigenetics ; 8(8): 839-48, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23880508

RESUMO

DNA methylation can regulate gene expression and has been shown to modulate cancer cell biology and chemotherapy resistance. Therapeutic radiation results in a biological response to counter the subsequent DNA damage and genomic stress in order to avoid cell death. In this study, we analyzed DNA methylation changes at>450,000 loci to determine a potential epigenetic response to ionizing radiation in MDA-MB-231 cells. Cells were irradiated at 2 and 6 Gy and analyzed at 7 time points from 1-72 h. Significantly differentially methylated genes were enriched in gene ontology categories relating to cell cycle, DNA repair, and apoptosis pathways. The degree of differential methylation of these pathways varied with radiation dose and time post-irradiation in a manner consistent with classical biological responses to radiation. A cell cycle arrest was observed 24 h post-irradiation and DNA damage, as measured by γH2AX, resolved at 24 h. In addition, cells showed low levels of apoptosis 2-48 h post-6 Gy and cellular senescence became significant at 72 h post-irradiation. These DNA methylation changes suggest an epigenetic role in the cellular response to radiation.


Assuntos
Dano ao DNA , Metilação de DNA/efeitos da radiação , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Reparo do DNA , Relação Dose-Resposta à Radiação , Epigênese Genética , Ontologia Genética , Humanos , Tolerância a Radiação , Fatores de Tempo
11.
Transl Oncol ; 4(4): 227-33, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21804918

RESUMO

Tumor radioresistance leads to recurrence after radiation therapy. The radioresistant phenotype has been hypothesized to reside in the cancer stem cell (CSC) component of breast and other tumors and is considered to be an inherent property of CSC. In this study, we assessed the radiation resistance of breast CSCs using early passaged, patient-derived xenografts from two separate patients. We found a patient-derived tumor in which the CSC population was rapidly depleted 2 weeks after treatment with radiation, based on CD44(+) CD24(-) lin(-) phenotype and aldehyde dehydrogenase 1 immunofluorescence, suggesting sensitivity to radiotherapy. The reduction in CSCs according to phenotypic markers was accompanied by a decrease in functional CSC activity measured by tumor sphere frequency and the ability to form tumors in mice. In contrast, another patient tumor sample displayed enrichment of CSC after irradiation, signifying radioresistance, in agreement with others. CSC response to radiation did not correlate with the level of reactive oxygen species in CSC versus non-CSC. These findings demonstrate that not all breast tumor CSCs are radioresistant and suggest a mechanism for the observed variability in breast cancer local recurrence.

12.
Transl Oncol ; 3(3): 149-52, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20563255

RESUMO

Cancer stem cells (CSCs) are a subpopulation of tumor cells with preferential tumor-initiating capacity and have been purported to be resistant to chemotherapy. It has been shown that breast CSC are, on average, enriched in patient tumors after combination neoadjuvant chemotherapy including docetaxel, doxorubicin, and cyclophosphamide (CPA). Here, we investigate the resistance of breast CSC to CPA alone in a xenograft model. CPA treatment led to a 48% reduction in tumor volume during a 2-week period. Cells bearing the CD44(+) CD24(-) phenotype were reduced by 90% (2.5% to 0.24%) in CPA-treated tumors, whereas cells with aldehyde dehydrogenase activity were reduced by 64% (4.7% to 1.7%). A subsequent functional analysis showed that CPA-treated tumors were impaired in their ability to form tumors, indicating loss of functional tumor-initiating activity. These results are consistent with a CSC phenotype that is sensitive to CPA and indicate that some patient CSC may not display the expected resistance to therapy. Deciphering the mechanism for this difference may lead to therapies to counteract resistance.

13.
Neoplasia ; 12(5): 357-65, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20454507

RESUMO

BACKGROUND: Knowledge of factors and mechanisms contributing to the inherent radioresistance of pancreatic cancer may improve cancer treatment. Irradiation inhibits glycogen synthase kinase 3beta (GSK3beta) by phosphorylation at serine 9. In turn, release of cytosolic membrane beta-catenin with subsequent nuclear translocation promotes survival. Both GSK3beta and beta-catenin have been implicated in cancer cell proliferation and resistance to death. METHODS: We investigated pancreatic cancer cell survival after radiation in vitro and in vivo, with a particular focus on the role of the function of the GSK3beta/beta-catenin axis. RESULTS: Lithium chloride, RNAi-medicated silencing of GSK3beta, or the expression of a kinase dead mutant GSK3beta resulted in radioresistance of Panc1 and BxPC3 pancreatic cancer cells. Conversely, ectopic expression of a constitutively active form of GSK3beta resulted in radiosensitization of Panc1 cells. GSK3beta silencing increased radiation-induced beta-catenin target gene expression as measured by studies of AXIN2 and LEF1 transcript levels. Western blot analysis of total and phosphorylated levels of GSK3beta and beta-catenin showed that GSK3beta inhibition resulted in stabilization of beta-catenin. Xenografts of both BxPC3 and Panc1 with targeted silencing of GSK3beta exhibited radioresistance in vivo. Silencing of beta-catenin resulted in radiosensitization, whereas a nondegradable beta-catenin construct induced radioresistance. CONCLUSIONS: These data support the hypothesis that GSK3beta modulates the cellular response to radiation in a beta-catenin-dependent mechanism. Further understanding of this pathway may enhance the development of clinical trials combining drugs inhibiting beta-catenin activation with radiation and chemotherapy in locally advanced pancreatic cancer.


Assuntos
Expressão Gênica/efeitos da radiação , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Pancreáticas/metabolismo , Tolerância a Radiação/genética , beta Catenina/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Radioterapia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
14.
Int J Radiat Oncol Biol Phys ; 75(3): 843-53, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18849123

RESUMO

PURPOSE: Mesenchymal stem cells (MSCs) are multipotent cells in the bone marrow that have been found to migrate to tumors, suggesting a potential use for cancer gene therapy. MSCs migrate to sites of tissue damage, including normal tissues damaged by radiation. In this study, we investigated the effect of tumor radiotherapy on the localization of lentivirus-transduced MSCs to tumors. METHODS AND MATERIALS: MSCs were labeled with a lipophilic dye to investigate their migration to colon cancer xenografts. Subsequently, the MSCs were transduced with a lentiviral vector to model gene therapy and mark the infused MSCs. LoVo tumor xenografts were treated with increasing radiation doses to assess the effect on MSC localization, which was measured by quantitative polymerase chain reaction. MSC invasion efficiency was determined in an invasion assay. RESULTS: MSCs migrated to tumor xenografts of various origins, with few cells found in normal tissues. A lentiviral vector efficiently transduced MSCs in the presence, but not the absence, of hexadimethrine bromide (Polybrene). When LoVo tumors were treated with increasing radiation doses, more MSCs were found to migrate to them than to untreated tumors. Irradiation increased MSC localization in HT-29 and MDA-MB-231, but not UMSCC1, xenografts. Monocyte chemotactic protein-1 expression in tumors did not correlate with the basal levels of MSC infiltration; however, monocyte chemotactic protein-1 was modestly elevated in irradiated tumors. Media from irradiated LoVo cells stimulated MSC invasion into basement membranes. CONCLUSION: These findings suggest that radiation-induced injury can be used to target MSCs to tumors, which might increase the effectiveness of MSC cancer gene therapy. The production of tumor-derived factors in response to radiation stimulates MSC invasion.


Assuntos
Movimento Celular/fisiologia , Terapia Genética/métodos , Lentivirus , Células-Tronco Mesenquimais/fisiologia , Neoplasias/terapia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Neoplasias do Colo/terapia , Terapia Combinada/métodos , Meios de Cultura/farmacologia , Feminino , Corantes Fluorescentes , Expressão Gênica , Vetores Genéticos/uso terapêutico , Células HT29 , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/terapia , Brometo de Hexadimetrina/farmacologia , Humanos , Indóis , Lentivirus/genética , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias/metabolismo , Neoplasias/radioterapia , Especificidade de Órgãos , Transdução Genética/métodos , Transplante Heterólogo
15.
Cancer Res ; 66(24): 11554-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178844

RESUMO

Ataxia telangiectasia mutated (ATM) kinase plays a crucial role in the cellular response to DNA damage and in radiation resistance. Although much effort has focused on the relationship between ATM and other nuclear signal transducers, little is known about interactions between ATM and mitogenic signaling pathways. In this study, we show a novel relationship between ATM kinase and extracellular signal-regulated kinase 1/2 (ERK1/2), a key mitogenic stimulator. Activation of ATM by radiation down-regulates phospho-ERK1/2 and its downstream signaling via increased expression of mitogen-activated protein kinase phosphatase MKP-1 in both cell culture and tumor models. This dephosphorylation of ERK1/2 is independent of epidermal growth factor receptor (EGFR) activity and is associated with radioresistance. These findings show a new function for ATM in the control of mitogenic pathways affecting cell signaling and emphasize the key role of ATM in coordinating the cellular response to DNA damage.


Assuntos
Antígenos de Diferenciação/genética , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/efeitos da radiação , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/efeitos da radiação , Glicoproteínas de Membrana/genética , Moléculas de Adesão de Célula Nervosa/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/efeitos da radiação , Receptores Imunológicos/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Replicação do DNA , Fosfatase 1 de Especificidade Dupla , Ativação Enzimática , Humanos , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase , Proteína Fosfatase 1 , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Transplante Heterólogo
16.
J Virol ; 80(14): 7275-80, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809334

RESUMO

LEDGFp75 is a cellular protein which binds human immunodeficiency virus type 1 (HIV-1) integrase with high specificity and affinity but whose function in infection has not been defined. We infected LEDGFp75-deficient primary macrophages with wild-type HIV in order to assess potential infection phenotypes which would provide clues to LEDGFp75 function. Silencing of LEDGFp75 by 70 to 80% resulted in an average of 53% reduced infection of macrophages by HIV. Analysis of infection intermediates showed that integration, but not two-long-terminal-repeat (2LTR) circles or late cDNAs, was reduced up to 74% in LEDGFp75-deficient macrophages. Therefore, LEDGFp75 has a modest involvement in HIV-1 integration in macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inativação Gênica , Infecções por HIV/metabolismo , HIV-1/fisiologia , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Integração Viral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Infecções por HIV/genética , Repetição Terminal Longa de HIV/genética , Humanos , Macrófagos/virologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
17.
J Virol ; 79(17): 11541-6, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16103209

RESUMO

In an in vitro assay employing reconstituted nuclei, importin 7 (IPO7) has been implicated in nuclear translocation of human immunodeficiency virus type 1 (HIV-1) cDNA. Using RNA interference technology, we inhibited expression of IPO7 by 80 to 95% in primary macrophages and in HeLa cells and monitored their ability to support HIV-1 and simian immunodeficiency virus (SIV) cDNA synthesis, nuclear translocation, and infection efficiency. Marked IPO7 deficiency did not alter the rate or extent of HIV-1 or SIV cDNA synthesis or nuclear translocation. The infection efficiency of HIV-1 was similarly unaltered. Therefore, in natural, nondividing targets of HIV-1, IPO7 may be dispensable for infection.


Assuntos
Infecções por HIV/metabolismo , Carioferinas/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Células Cultivadas , Regulação Viral da Expressão Gênica , Infecções por HIV/virologia , HIV-1/genética , Células HeLa , Humanos , Carioferinas/metabolismo , Macrófagos/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética
19.
Mol Ther ; 9(6): 923-31, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15194059

RESUMO

Retroviral vector integration into the human genome carries increased risk of oncogenesis with increasing integrations. To boost transgene expression for gene therapy, multiple integrations are often sought. We studied the relationship between the number of vector integrations and transgene expression and the effect that drug selection in an MGMT-selection model would have on vector copy number. K562 cells were transduced using a lentiviral vector and a library of clones was generated. Median proviral copy number was 4 and a positive correlation with transgene expression was observed. Transgene expression increased at a linear rate between 1 and 4 vector copies/cell, but was unpredictable at >4 integrations/cell. When lentivirus MGMT(P140K)-transduced K562 cells were treated with O(6)-benzylguanine (BG)/BCNU, there was no selection for increased median copy number in colony-forming units, despite strong selection pressure and an increase in transgene expression and activity. These data show a direct and linear correlation between MGMT(P140K) transgene expression and vector copy number. Strong BG/BCNU selective pressure does not result in preferential survival of high-copy-number clones but does select for strong transgene expression. Thus drug selection would not be expected to increase the risk of oncogenesis due to exaggerated selection in favor of high-copy-number vector integration.


Assuntos
Vetores Genéticos/genética , Guanina/análogos & derivados , Guanina/farmacologia , Lentivirus/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Integração Viral , Alquil e Aril Transferases/análise , Linhagem Celular , Expressão Gênica/genética , Terapia Genética/efeitos adversos , Humanos , Mutagênese Insercional/genética , O(6)-Metilguanina-DNA Metiltransferase/análise , Reação em Cadeia da Polimerase , Provírus/genética , Transdução Genética , Transgenes/genética , Integração Viral/efeitos dos fármacos , Integração Viral/genética
20.
J Clin Invest ; 112(10): 1561-70, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14617757

RESUMO

Infusion of transduced hematopoietic stem cells into nonmyeloablated hosts results in ineffective in vivo levels of transduced cells. To increase the proportion of transduced cells in vivo, selection based on P140K O6-methylguanine-DNA-methyltransferase (MGMT[P140K]) gene transduction and O6-benzylguanine/1,3-bis(2-chloroethyl)-1-nitrosourea (BG/BCNU) treatment has been devised. In this study, we transduced human NOD/SCID repopulating cells (SRCs) with MGMT(P140K) using a lentiviral vector and infused them into BG/BCNU-conditioned NOD/SCID mice before rounds of BG/BCNU treatment as a model for in vivo selection. Engraftment was not observed until the second round of BG/BCNU treatment, at which time human cells emerged to compose up to 20% of the bone marrow. Furthermore, 99% of human CFCs derived from NOD/SCID mice were positive for provirus as measured by PCR, compared with 35% before transplant and 11% in untreated irradiation-preconditioned mice, demonstrating selection. Bone marrow showed BG-resistant O6-alkylguanine-DNA-alkyltransferase (AGT) activity, and CFUs were stained intensely for AGT protein, indicating high transgene expression. Real-time PCR estimates of the number of proviral insertions in individual CFUs ranged from 3 to 22. Selection resulted in expansion of one or more SRC clones containing similar numbers of proviral copies per mouse. To our knowledge, these results provide the first evidence of potent in vivo selection of MGMT(P140K) lentivirus-transduced human SRCs following BG/BCNU treatment.


Assuntos
Técnicas de Transferência de Genes , Guanina/análogos & derivados , Transplante de Células-Tronco Hematopoéticas , Lentivirus/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Imunodeficiência Combinada Severa , Transdução Genética , Condicionamento Pré-Transplante , Animais , Antígenos CD34/metabolismo , Antineoplásicos/metabolismo , Carmustina/metabolismo , Vetores Genéticos , Guanina/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lentivirus/genética , Camundongos , Camundongos SCID , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Radiação , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA